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This is a draft manuscript

While in the past it was more common to make preprints, algorithms and
software freely available, authors have become more protective of their
work. I do not know whether this is a reflection of the increased com-
petition for recognition or the pressure to commercialize research results.
By making these notes available I hope to receive information about errors,
misconceptions, missing references or acknowledgment, and suggestions to
improve the text. In the modern world of publishing one also feels a need
to clarify that the author makes no no warranty of any kind, expressed or
implied, with regard to programs, algorithms, theoretical concepts, or the
documentation contained in this manuscript. The author shall not be liable
in any event for incidental or consequential damages in connection with, or
arising out of, the use of the material provided here.
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1 Preface

The focus of this book is on systems biology, an emerging area of research that is a natural
conclusion from the advances made in related areas, including genomics, molecular- and
cell biology and bioinformatics.

The areas of genomics and bioinformatics have identified and characterized many of
the components that make up a living cell and maintain its function. A primary aim
of bioinformatics has been to link genome sequences or genes with RNA products and
proteins, i.e., to determine whether in a particular experimental context there exist a re-
lationship between genes and proteins, amongst genes and proteins, and across genomes.
The principal objective of modern life sciences is to describe the role of these compo-
nents in developmental and disease mechanisms. While the developments in genomics and
bioinformatics have brought tremendous advances in our understanding of molecular and
cell biology, it is increasingly recognized that it is the temporal interaction amongst large
numbers of molecules that determine phenomena observed at higher (metabolic, cellular,
or physiological) levels. This dynamic or systems perspective and integrative approach
(combining data from the genome, transcriptome, proteome, metabolome,..) is considered
in the area of research referred to as Systems Biology :

Systems biology investigates the functioning and function of inter- and
intra-cellular dynamic networks, using signal- and systems-oriented approaches.

To understand the functioning and function of cells, systems biology addresses the
following central questions:

How do the components within a cell interact to bring about
its structure and function? (intra-cellular dynamics)

How do cells interact to bring about coherent cell populations?
(inter-cellular dynamics)

The functions of a cell do not reside in the molecules themselves but in their interac-
tions, just as life is an emergent, rather than an immanent or inherent, property of matter.
Although life, or the function of the cell arise from the material world, they cannot be
reduced to it. Systems biology therefore signals a shift, away from molecular characteriza-
tion and cataloguing of the components in the cell, towards an understanding of functional
activity.

The term ‘systems’ in systems biology refers to systems theory, or more specifically,
to dynamic systems theory. We here there focus on dynamics and transient changes
occurring within cells. These changes, which in most cases will be molecule concentrations,
carry information and are at the root of cellular functions that sustain and develop an
organism. The concept by which scientists organize these processes are pathways, i.e.,
networks of biochemical reactions. A pathway is an abstraction, a model, of an observed
reality. The aim for us is to take the concept of pathways, from simple maps or graphs
that name the components and indicate graphically and only roughly their relationship,
towards a dynamic simulation of the interactions of proteins in a pathway. We are going
to concentrate on signal transduction pathways for the examples given. However, it is
important to emphasize that the methodologies used for modelling and simulation are
generic, i.e., they are applicable to a wide range of processes related to intra- and inter-
cellular dynamics. In fact, the mathematical concepts and techniques introduced here are
widely used in various other areas, including engineering, physics, chemistry. Learning
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them as generic tools, has a number of advantages for the student who is interested in
broad, interdisciplinary training.

The motivation for systems biology, and dynamic pathway modelling in particular, is
that many neuro- and cancer-related diseases can be considered a failure of communication
at molecular level. The area of cell signaling investigates the transmission of information
from receptors at the cell surface to gene activation in the nucleus (intracellular dynamics)
as well as the communication among cells (intercellular dynamics). Signals are relayed by
means of biochemical reactions occurring in space and time and organized in pathways. We
are going to investigate mathematical modelling and simulation of inter- and intracellular
dynamics. Mihajlo Mesarović played an important role in defining the discipline systems
biology. Already 1968 he wrote [Mes68]:

“In spite of the considerable interest and efforts, the application of sys-
tems theory in biology has not quite lived up to expectations. [..] one of the
main reasons for the existing lag is that systems theory has not been directly
concerned with some of the problems of vital importance in biology.” “The
real advance in the application of systems theory to biology will come about
only when the biologists start asking questions which are based on the system-
theoretic concepts rather than using these concepts to represent in still another
way the phenomena which are already explained in terms of biophysical or bio-
chemical principles. [..] then we will not have the ‘application of engineering
principles to biological problems ’ but rather a field of systems biology with its
own identity and in its own right.”

Since then there have been dramatic advances in technologies including, gene and protein
expression assays, confocal microscopy, calcium imaging, and fluorescent tagging of pro-
teins, which allow us to observe reactions in time and space. We should not ignore, the
fact that as yet we have some way to go with regard to quantitative stimulus-response
experiments that generate time series data suitable for conventional system identification
techniques. But even if the technologies are available possibly the greatest hurdle and cer-
tainly the reason why it is so attractive, is the human factor: advances in the life sciences
will rely on experimentalists and theoreticians working closely together; they need each
other.

The outline of the text is as follows. Chapter 2 provides an introduction to the sub-
ject area, including a discussion of the scientific approach and the role of modelling. The
‘novelty’ of systems biology is that it considers signal- and systems-oriented approaches
to modelling and simulation of cell-biological and molecular systems. We are going to
introduce the concept of a ‘system’ from a very general perspective which is then refined
and adapted to fit the application under consideration. Systems biology considers dynam-
ics, including transient changes of molecular concentrations and differential equations are
therefore unavoidable. The first chapter provides a gentle introduction to the concept. For
the theoretician it is essential to not only have a basic grasp of molecular and cell biology
but also to appreciate the generation of data from experiments. Chapter 3 introduces the
two basic modelling concepts for biochemical reaction networks: mass action models and
the chemical master equation approach. We are going to provide a thorough discussion
of the differences and similarities and on the way learn a number of important or useful
mathematical techniques. With these tools at hand, in Chapter 6 this knowledge is applied
to signal transduction pathways. The mixture of biology and mathematics, of basic and
advanced material is deliberate. In interdisciplinary research it is important to be able
to read a broad spectrum of literature and it is important to develop confidence for the
experience that not everything can be understood after the first reading. The Appendix
with its summary of mathematical notation used in the different chapters and a glossary of
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technical terms is an idea adopted from biological textbooks to help the reader in finding
her/his way through the material. Throughout the text, the most important concepts and
terms are indicated in the page margin at the place where they are introduced.

Rostock, April 8, 2005

Literature Review

Systems biology is an emerging area of research and which is a truly an interdisciplinary
area, combining various disciplines and areas of research. A consequence of this is that
although there are already many relevant research journal publications, there are currently
few suitable textbooks available. In trying to fill a gap with the present text, we should not
suggest that it is possible to cover all aspects of systems biology in one book. Considering
the large number of theoretical methodologies, experimental techniques and biological
questions, it will be necessary to consult complementary literature. The targeted audience
for the present text are graduate and postgraduate students and researchers from a range
of disciplines. The aim is to make the text accessible to students and researchers who
may be at different levels of their training/experience. Towards this end we are going to
illustrate concepts with plots and line drawings wherever possible. Each Section will give
numerous references to research publications and books. In addition, we here give a brief
list of textbooks that could help the novice to complement the material presented here.

Although the edited volume, [BB01] was written as a textbook and provides a range
of examples for models. It covers many methodologies and application areas, but is neces-
sarily limited to brief introductions which do not allow a more comprehensive treatment
of the mathematical basis of the models. Since it was written by practitioners it remains
a valuable source book with motivating examples. The monograph by Davidson [Dav01]
describes how embryonic development is the outcome of a vast spatial and temporal series
of differential gene expressions, and how the control of these depends on a hardwired reg-
ulatory program built into the DNA sequence. Apart from few logical wiring diagrams,
mathematical modelling and simulation does not play a role in this book. It does however
provide a good example for theoreticians to understand the biological challenge related
to regulatory systems that are involved in the development of an organism. The edited
volume by Fall et al. [F+02] comes closest to the present text, is well written with an
interdisciplinary audience in mind and is broader in scope. Somewhat more advanced is
the standard text in mathematical biology by Murray [Mur02]. It covers a vast range of
mathematical techniques and biological examples. In fact, several older texts in the area
of mathematical biology are ideal for studies in systems biology but unfortunately some
of these texts are out of print.

[Kre93] is a standard reference in the engineering sciences and covers a large spec-
trum of basic mathematical techniques. There are excellent introductory treatments of
differential equations available, including [BD01] to name only one. Those texts, written
for an engineering undergraduate audience, have gone through various editions, are well
illustrated and accessible to biologists. A more advanced but still introductory textbook
is [HSD04], introductory texts focussing on nonlinear differential equations are [JS99] and
[Str00b].

Mathematical modelling and simulation has been applied to metabolic pathways and
a number of excellent texts are available, including, [CB95], [Voi00] for introductory ma-
terial, whereas [Fel97] and [HS96] are more advanced texts, focussing on metabolic control
analysis (MCA). The main difference between signalling and metabolic pathways is that
for the latter we can concentrate on steady-states, which means that many problems are
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of algebraic nature and do not require the solution of differential equations. There are a
large number of basic maths books aimed at the bio- or life science student. A good, short
introduction to the mathematics that are required for any experimentalist are [Pho97] and
[CB99], although they avoid differential equations and probability theory. For statistical
techniques that are relevant for generating data, we refer to [QK02]. The books by Eason
et al. [ECG80] and Batschelet [Bat79], although written for the life scientists, also intro-
duce differential equations and other more advanced material. [MS99] is an introduction
to modelling of dynamic systems and is a good complementary text to the present one.

With regard to software tools, an important development for systems biology is the
Systems Biology Markup Language (SBML). This standard provides a computer-readable
format for representing models of biochemical reaction networks. SBML is applicable to
metabolic networks, cell-signaling pathways, genomic regulatory networks, and many other
areas in systems biology. It is an international effort to provide a free and open modelling
language, supported by a large group of developers. The web-site www.sbml.org provides
links to a number of software tools for modelling and simulation but also has a repository
for SBML code of models published in the literature. These models are an excellent source
for hands-on exercises.

For the theoretician or modeler, there are various excellent introductory textbooks
for molecular and cell biology. Some of these books have gone through many editions
and been translated into various languages1. The comparison between mathematical and
biological textbooks is striking. Biology textbooks are often heavy, large in size, rich
in colorful illustration and images. A good mathematics textbook will have a couple of
black & white line drawings but otherwise must appear rather dull and thin to the reader
from the life science community. The complexity of systems dealt with and the level of
abstraction used to describe such systems is in both areas very similar and yet there are
very different means of representing information and generating knowledge.

A broad general introduction to modern life sciences is available, for example, through
[P+01] and [Har01]. Focussing on the cell, the book by Alberts et al. [A+02] has become
almost a standard text. For microorganisms, [MMP00] provides an excellent introduction
and survey of microbiology. The book by Brown [Bro99] is an accessible introduction to
the are of genomics. The biochemistry that underlies the reactions in pathways is covered
by various books, including [SBT02] or [MVHA99]. The area of signal transduction is
developing very rapidly, and there are few textbooks at introductory level available; on
example is [Gom02]. For engineers and computer scientists the introductory text [TB04]
provides a concise summary of the most important concepts and principles underlying
modern life sciences research.

For the biologist who is interested in interdisciplinary research but whose school
days instilled a dislike for mathematics, may find parts of the material presented here
challenging. Throughout the text we are going to derive virtually all results in detail,
rather than just presenting an equation. If the introductory maths texts, which we
have described above, are not sufficient, we provide a very basic introduction to math-
ematical and statistical modelling as a complement to the present text, available from
http://www.sbi.uni-rostock.de/data_handling.htm. Furthermore, we are going to
encourage computational studies and simulations to ‘play’ with the ideas presented here.
A collection of small programmes is available from www.sbi.uni-rostock.de.

1The reader is advised NOT to consult a translation but always the original if it was published in
English. The life sciences are not only an interdisciplinary but also international effort and it is important
for the student to gain confidence in English for he will have to read the research literature, publish and
present his work in English, whether one works in academia or in industry.

www.sbml.org
http://www.sbi.uni-rostock.de/data_handling.htm
www.sbi.uni-rostock.de
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Fig. 2.1: The total metamorphosis of a butterfly is an example for one genomes realizing
two proteomes. It is also a spectacular example for regulation, control and coordination in
cell differentiation and the development of an organism.

2 Modelling and Understanding Natural Systems

One of the most spectacular example for the wonderful complexity and beauty in nature
is the life cycle and total metamorphosis of the butterfly or dragonfly. During its mor-
phological development the organism undergoes a dramatic transformation, in case of the
dragonfly from an ugly predator, living under water, to a beautiful nectar eating insect.
Nowadays it is argued that the information to enable this fascinating process is encoded
in the genome of the organism; whereby the genome is understood as the entirety of the genome

genetic information, encoded in a physical structure known as the DNA molecule. How is
this process of the development of an organism realized?

What has been referred to as the post-genomics era of biology, is associated with areas
of research that exploit the fact that we have now available the genome sequences for
various organisms. The hope has been that using this information we should be able
to understand observations at the cell-, phenotypic-, or physiological level. Zooming in
from the entirety of an organism to the cell-level, we are covering an enormous scale of
magnitude and quantity. While a human can reach heights of say 2.11m, a single cell has
a diameter of only about ten micrometers. A human body may consist of some 1013 cells,
where our largest organ, the liver consists of approximately 300 billion cells alone. The
earth has only about six billion inhabitants, and without loosing the enthusiasm for our
research it is sometimes healthy to remind ourselves of the intellectual cosmos in which
we are trying to travel.

Not surprisingly then, in many cases where there was an initial hope to discover a sim-
ple ‘gene/disease’ relationship, it was realized that what we are dealing here is a complex
web of hierarchical, multi-levelled, regulated dynamic processes. These processes occur
within cells and between cells and answering the question as to how a cell takes its place signalling

in higher levels of organization like tissues and organs, means we ought to ask questions
about the communication and decision making in cells. The two central aspects of inter-
and intra-cellular communication are therefore signalling and gene expression. gene expression

Studying intra- and inter-cellular communication requires sophisticated technologies
to generate data. The complexity of the processes investigated and thus of the data,
motivates the use of mathematics as an extension of common sense reasoning. In the
words of Mike Mesarovic “Like you need a set of tools to do experiments, you need a set
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of concepts to understand”.

The scientific approach, by which we wish to investigate questions like those mentioned
above, is characterized by the attempt to model natural systems1. An interesting aspect of
interdisciplinary research is the diversity of perspectives and approaches individuals can
contribute. The following story explains humorously differences among the modelers in
systems biology. A University sends a philosopher, a biologist, a mathematician, a physi-
cist, an engineer and a computer scientist to a hill walking trip in an attempt to stimulate
interdisciplinary research. During a break, they rest on a bench, watching a cow in a field
nearby. The philosopher asks “I wonder how one could decide on the size of a cow?”. Since
the object under consideration is a biological species, the biologist responds first: “I have
seen many cows in this area and know it is a big cow”. The mathematician is nervous
about the lack of rigor and argues “The true volume is determined by integrating the
mathematical function that describes the outer surface of the cow’s body.” The physicist
realizes that this function is difficult to get and suggests an experiment: “You lift the cow
into a completely filled swimming pool, and then measure the overflowing water, which
corresponds directly to the volume of the cow, simple as that!” By now, the engineer had
some time to think about the problem and suggests “Let’s assume the cow is a sphere...”.
The computer scientist remained quite all along and is increasingly nervous: “Sorry mates,
I thought my laptop wouldn’t work up here!”.

The underlying philosophy for the present text is to understand cell function through
emphasizing transformations, processes over the objects. The technological developments
in recent years have given us means to characterize the molecular components that make
up a cell. For many researchers the function or biological role of a protein is largely
defined by its three-dimensional structure. This obsession with molecular characterization
has also led to the misconception of a gene as the causal agent for observations at the
phenotype- or physiological level of an organism. The thrust of the present work is that
it is systems dynamics that gives rise to biological function. A consequence of this is
that the bioinformatics approach, i.e., mining large databases with information about the
molecular characterization of components that make up the cell is necessarily limited. The
physicist Erwin Schrödinger concluded that

“Life is an emergent, rather than an immanent or inherent, property of
matter. Although it arises from the material world, it cannot be reduced to
it.”

The relational character of our approach is also reflected in the following quotes attributed
to the biologist Linus Pauling and universal genius Henri Poincaré, respectively:

“Life is a relationship among molecules and not a property of any molecule.”

“Science is built up of facts, as a house is with stones. But a collection of
facts is no more a science than a heap of stones is a house.”

In fact Poincaré apparently went as fair as saying

“The aim of science is not things in themselves but the relations between
things; outside these relations there is no reality knowable.”

1A natural system is a system considered in the natural sciences, i.e., physics, chemistry, biology.
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2.0.1 Differential Equations

While the physical object we focus on is the cell, the most fundamental process we consider
is that of a biochemical reaction. In these reactions the concentration of a molecular
species, referred to as the substrate, is changed. We are going to describe networks of
coupled reactions with the help of equations. As an example let us consider the following
Michaelis-Menten equation:

V =
Vmax · S
Km + S

, (2.1)

where the variable on the left-hand side of the equation is the dependent variable or ‘out-
put’. Vmax and Km are fixed numbers, i.e., constants or parameters, while S denotes the
concentrations of the substrate and is our independent variable. A graphical representa-
tion of equation (2.1) is shown in Figure 2.2. This equation, which is widely used in the
biological sciences, is ‘hiding’ the fact that it is derived from a differential equation. Dif-
ferential equations describe the rate of change of a variable over time, and are thus ideally
suited to describe changes in concentrations in biochemical reactions. We are going to
use differential equations extensively throughout and the present section serves as a gentle
introduction to this most useful conceptual framework.
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Fig. 2.2: Michaelis-Menten plot describing an enzyme kinetic reaction.

Pathways are the concept by which knowledge of interactions of proteins in cell func- pathways

tions is organized. A pathway map exhibits the names of the molecular components, whose
interactions govern the basic cell functions. This leads us to a definition of pathways as
biochemical networks. One motivation for systems biology is to bring these static diagrams
to life by modelling and simulating the biochemical reactions that underlie cell function,
development, and disease.

Although a pathway or pathway map describes molecules, their physical state and
interactions, it is an abstraction and has no physical reality. An abstraction is a represen-
tation of an aspect of the real world, so as to reason about it. A model is the consequence
of this process, may it be by graphical means (e.g. the pathway map), by natural language,
or through mathematical formalisms.

A pathway map is thus a model and the first step in the art of modelling is to identify pathway map

which proteins need to be included in the model. A pathway can be described as if it is
composed of a set of basic biochemical reactions. If we denote the chemical species and/or
the modifications by capital letters, the following scheme would formalize a pathway:

Rµ : lµ1X1 + lµ2X2 + · · ·+ lµnXn
kµ−−−−−→ · · · (2.2)
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where X denotes a chemical species participating in a reaction, the ‘+’ signs represent
a combination, and the arrow represents a transformation. lµj ≥ 0 is the stoichiometric
coefficient of reactant species Xj , kµ is the rate constant at which the reaction proceeds.
The many symbols introduced here will not be relevant for our later discussion. The
message of this symbolic representation is to name the molecules involved in a reaction,
which proceeds at a rate k. In the biochemical reaction equation participating components
are denoted by X, while in the mathematical equations we use small letters x to denote
variables of the model. For example, the pathway

X1 + αX2
k1−→ βX3

k2−→ αX2 + γX4 , (2.3)

can be split into two reaction channels

R1 : X1 + αX2
k1−→ βX3 ,

R2 : βX3
k2−→ αX2 + γX4 .

When a reaction occurs, the changes to molecule populations can be summarized in vector
form

ν1 = (−1,−α, β, 0) , ν2 = (0, α,−β, γ) .

That is, if the first reaction channel is active, the population of X1 molecules decreases by
one, the population of X2 by α molecules and so forth.

The framework we are going to adopt to model biochemical reaction networks is that
of nonlinear differential equations. I consider differential equations a natural choice for
the following reasons. Causation is the principle of explanation of change in the realm
of matter. For anything to be different from anything else, either space or time, or both
have to be presupposed. Causation is a relationship, not between things, but between
changes of states of things. As we going to demonstrate, differential equation models are
an ideal means to realize this philosophy. Let consider the simplest of biological examples
to demonstrate the view of causation as an explanation of change. Studying a protease
cleaving peptide bonds in a substrate protein, a hypothesis or known fact would be to
stipulate that

“The rate of proteolysis is inversely proportional to amount of substrate.”

The purpose of mathematical modelling is to translate this statement into a set of equa-
tions, determine the parameter values of that model to reflect a particular experimental
set-up and then through simulation make predictions about the behavior, confirming or
disputing previous knowledge or hypotheses. In our example, a direct translation of the
statement above is the following differential equation

d

dt
S = −kpS(t)

parameter (fixed)

variable (changes)

The operator d/dt is used to represent the rate of change of the substrate concentration
S(t). As such it is related to the slope of the concentration profile, determined as the limit
of ∆t going towards zero. This is illustrated in the following diagram:

S(t)

t

∆S

∆t

d

dt
S = lim

∆t→0

∆S

∆t
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As indicated, we call a parameter a value of the model that does not change for the time
interval of interest, while a variable changes. The former are typically rate constants
while the latter are concentrations. Differential equations of the type dx/dt = . . . are differential equations

referred to as ordinary differential equations (ODEs). They consider changes only over
time and not space. If diffusion across an area of the cell has to be considered we would
end up with a description using partial differential equations (PDEs). Accounting for
different regions of the cell, e.g., the cytosol and the nucleus, can be realize with ODEs
by introducing different variables for the same protein, located in different regions. A
more serious threat to the differential equation approach comes from the translocation of
proteins, e.g., nucleocytoplasmic export. Time delays in a feedback loop more often than
not have a significant effect on the dynamics of a system. An explicit representation of
such phenomena leads to delayed differential equations. Needless to say that the theory for
partial and delayed differential equations is more complicated than for ordinary differential
equations.

In our example, the state of the system is fully determined by the equation that
describes the value of the substrate S at any time t:

S(t) = S0 · e−kpt , (2.4)

where S0 denotes the initial concentration of S at time t = 0. This equations also called
the solution to the differential equation above. Although there is also the “product”
concentration P (t), the result of the proteolysis, its value can be directly determined from
S(t)

P (t) = S0(1− e−kpt) . (2.5)

The simulation of this mathematical model produces plots of (2.4) and (2.5) (Figure
2.3). As trivial as this example may seem, modelling arbitrary complex pathways is a
straightforward extension of the approach demonstrate there.
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Fig. 2.3: Simulation of the differential equation model for the proteolysis.

Let us return to our pathway example (2.3). One way to construct a differential
equation model for pathway (2.3) is to refer to the law of mass action. This leads to
the following set of ordinary differential equations with dynamic variables x1, . . . , x4, and
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which correspond to chemical species X1, . . . , X4:

d

dt
x1 = −k1x1(t)x

α
2 (t)

d

dt
x2 = −αk1x1(t)x

α
2 (t) + αk2x

β
3 (t)

d

dt
x3 = βk1x1(t)x

α
2 (t)− βk2x

β
3 (t)

d

dt
x4 = γk2x

β
3 (t) .

(2.6)

Looking at the structure of these equations, we recognize the generalized representation
for (2.2):

d

dt
xi(t) =

M∑

µ=1

νµikµ

n∏

j=1

xj
lµj (t) i = 1, 2, . . . , n (2.7)

where the units of the concentrations x are mol per liter, M=mol/L. For simplicity, I omit
the commonly used square brackets [ ] to denote concentrations. The set of nonlinear
differential equations (2.7) describes a large class of systems but is by no means the most
general representation.

2.0.2 Dynamic Systems Theory

The mathematical model (2.7), as general as it may seem, remains a particular choice
for a conceptual framework in which to model biochemical reaction networks. A further
generalization, which frees us from the discussion of whether mass action or Michaelis-
Menten kinetics, are appropriate is to consider the right-hand side of (2.7) as a mapping

f : X × P→ R

where X denotes the state-space and P a parameter space. At any point in time t ∈ I,
the concentrations are collected in a vector, called the state of the system and denoted

x(t) =
(
x1(t), . . . , xn(t)

)
.

For a particular set of parameter values Θ ⊂ P, the current state x(t) is associated with
or mapped to a rate of change in the set of real numbers R. Any particular parameter
value is denoted as θ ∈ Θ. The model of ordinary differential equations (2.7) can then be
generalized as

ẋ = f
(
x(t), Θ

)
, (2.8)

where ẋ is short for dx/dt and f is a n-valued mapping. The vector-valued mapping f
determines the dynamics of the system2. If one imagines the state (vector) of concentra-
tions as a point in state-space X = Rn

+, the temporal evolution of the system describes a
curve, called trajectory, in X = X1×· · ·×Xn. The analysis of the dynamics of the system
may thus be conducted in geometric terms, as illustrated in the following diagram:

X1

X2

X3

x1

x2

x3

x(t)

2In subsequent sections various variations of (2.8) will be discussed. The mapping f may alternatively
denoted V (for velocity). The parameter vector is often omitted despite the fact that it is always present.
The absence of a t in ẋ = f(x(t), Θ, t) is however significant as this indicates a time-invariant system,
which we assume throughout.
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The system (2.8) is said to be unforced (or autonomous since there is no independent input
u(t) inside the bracket. Since the dynamics arising from (2.8) can be rather complex a
common approach is to decompose a complex system into simpler subsystems or modules
(see for example [TCN03, SJ04]). Under the headings of bifurcation analysis, phase-space
analysis, stability analysis, reachability, observability, controllability, and realization theory,
dynamic systems theory provides graphical and mathematical tools to predict the behavior
of inter- and intra-cellular dynamics. The challenges for the modelling lie in the relatively
large number of variables, in the inherent nonlinearity of interactions and the difficulties
in getting quantitative time series data. Graphical tools are usually restricted to two or
three variables at the time, which motivates the reduction of large systems into modules
and subsystems. Nonlinear analysis is not globally applicable and is usually reduced to
local linear stability analysis, which is then quite well established. We are now going to
give a brief introduction to this dynamic analysis.

1

2

3 4

x1

x2

x3 x4

Fig. 2.4: Decomposition of the pathway model (2.6) into subsystem described by (2.9).

As can be seen from (2.7) the nonlinear properties of pathways are mostly determined
from simple interactions among the system variables. One intuitive approach is therefore
to decompose the network (2.8) into subsystems

ẋi = fi

(
xi(t), x̄i(t), Θ

)
, (2.9)

where xi is now a scalar and x̄i is an input-vector consisting of the other state-variables xk,
k 6= i, of all other subsystems. Figure 2.4 illustrates the decomposition for the pathway
model (2.6). In dynamic pathway modelling we are particularly interested in transient
changes and asymptotic behavior for t → ∞. For signalling pathways, transient changes
are of particular interest, while steady states are particular relevant for metabolic path-
ways. The plots in Figure 2.5 show typical responses encountered in dynamic pathway
modelling. Figure 2.5 shows on the left monotonic responses, while on the right there are
damped oscillations. Another important case are sustained oscillations as they are known
from the cell cycle, calcium and glycolytic systems. More recently, sustained oscillations
are also discussed in the context of cell signalling. In the Figure the systems depicted
reach a steady state after about 15 minutes. Thereafter the are no changes observable in
the dynamics. This corresponds to the mathematical condition where the rates of change
on the left-hand side of the different equation is equal to zero:

0 = f
(
x(t), Θ

)
. (2.10)

For a given and fixed set of parameter values Θ the points in X(t) for which this condition
is met are called variously steady-states, fixed points, critical points. Stability analysis
provides tools to characterize the dynamics of the system the transient behavior leading
up to them and thereafter. It is then possible to predict whether the system will display
cyclic changes of concentrations or whether they remain constant. Furthermore, it is
possible to predict whether for small changes or perturbations the system remains stable
with the critical point behavior or not. Bifurcation analysis is used to predict how system
dynamics change as a function of parameter values or changes to them.
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For most practical purposes these analyzes are conducted by local linearization of the
nonlinear system around critical points obtained from (2.10) and then use well established
tools from linear systems theory. Ignoring the subscripts denoting a subsystem in (2.9),
we linearize the system (2.8) around the critical point x∗ (now including all xi and xk) by
considering small perturbations to the steady-state

x(t) = x∗(t) + ∆x(t)

where powers (∆x)p, p > 1, are considered “very small” compared to ∆x. This is indicated
by the notation

(∆x)p .
= o(∆x) .

A classical technique to approximate a function around a point is by means of a Taylor
series. Assuming f(·) is sufficiently smooth such that derivatives exist, the Taylor series
expansion around x∗ is given by

f
(
x(t), Θ

)
= f

(
x∗(t)

)
+ Dfx∗∆x(t) + o(∆x) ,

where

Dfx∗ =

(

∂fi

(
x(t), Θ

)

∂xj

)∣
∣
∣
∣
∣
x∗

, with i, j = 1, 2, . . . , n .

is the Jacobian matrix of first partial derivatives

Dfx∗ =






∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn

∂x1
· · · ∂fn

∂xn






of the mapping

f =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
.

The linearized system can now be written as

∆ẋ = Dfx∗∆x(t) , (2.11)

where ∆x(t) = x(t) − x∗ denotes deviations from the steady state. The Jacobian matrix
is of particular interest. An off-diagonal element of the Jacobian describes the change of
one variable, relative to another. Positive or negative entries correspond to activation,
respectively inhibition of one variable by another3. If we denote the Jacobian matrix by
A and consider the diagonal matrix Ã = diag(A), which contains the diagonal entries of
A, then the decomposition of the linearized system (2.11) into one-component subsystems
(2.9) is given by

∆ẋ = Ã∆x(t) + (A− Ã)∆x̄(t) ,

where the connections among linear subsystems are now denoted by

∆x(t)
.
= ∆x̄(t) .

In terms of individual subsystems this corresponds to

∆ẋi = aii∆xi(t) +
n∑

j=1, j 6=i

aij∆xj(t) ,

3The eigenvalues and eigenvectors of the Jacobian provide valuable information about the behavior of
the dynamic system. There many books available that describe this kind of analysis (e.g. [GH83, JS99,
Str00b, HSD04]).
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where the first term on the right-hand side corresponds to self-regulation and the last term
corresponds feedback-type relations with other components. Interpreting ∆x̄ as an input
and ∆x as an output, we can study the behavior of the entire system, around the critical
point x∗, using well established tools from systems and control theory (e.g. [SJ04]). In
this setting the system can be represented by the following block-diagram:

∆x̄ A− Ã
∫

∆x∆x

Ã

+

Beginning with the very simple biochemical reaction of proteolysis, Section 2.0.1 in-
troduced differential equations for modelling changes of molecular concentrations in the
cell. We showed how sets of differential equations can be generalized and the dynamics
analyzed using dynamic systems theory. From this brief introduction we can summarize
the primary tasks in dynamic pathway modelling:

1. Realization Theory: Characterize model structures that could realize given stimulus-
response data sets.

2. System Identification: Determine values for model parameters; using experimental
data or simulation studies.

3. Control Analysis: Predict the consequence of changes to a pathway; in particular
modifications to parameters, introduction and removal of feedback loops.

Figure 2.5 illustrates typical time course data and the kind of qualitative analysis the
experimentalist is interested in. The main aim is to determine the causes of changes to
parameters and the removal or introduction of feedback loops. The analysis is qualitative
in the sense that exact values of the curves do not matter. More often we are interested
in whether a response is ‘accelerated’ or ‘decelerated’, whether a signal is suppressed or
amplified.
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Fig. 2.5: The two plots illustrate the qualitative analysis that is a main purpose of dynamic
pathway modelling. The aim is to establish the consequences or causes of parameter changes
and/or the removal/introduction of feedback loops. The plots show typical changes in form
of an acceleration/decelleration, amplification/surpression of signals.
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2.0.3 Dealing with Uncertainty

The equations considered so far are sometimes referred to as deterministic because given a
model in form of the mapping f and an input variable x, the output y is exactly determined
by y = f(x). We build and validate mathematical models with experimental data and
for most practical situations we cannot expect the measured data to match the model
perfectly. In other words, observations are usually subject to random variations. If we
were to repeat the experiment, for a particular point in time t, we would obtain a set,
called the sample of measurements. The purpose of statistics is to characterize this sample.sample

The most intuitive approach to investigate a sample of data from a repeated random
experiment is to visualize the distribution of the data in the sample space. Such a plot is
called a histogram. In Figure 2.6 we show a frequency histogram. Dividing the heightshistogram

of the bars by the total number of elements we obtain the relative frequency histogram.
Dividing the relative frequency by the bar width, the total area sum of all areas the bars
equals 1. This is then called relative frequency density. If the sample size is increased
and the bar width reduced, the relative frequency density function approaches gradually
a curve, called probability density function, denoted p(x), where we used the letter xi todensity function

denote an element of the sample space X. The area under the probability density function
is equal to one, i.e., the probability that any value will occur is one.
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Fig. 2.6: As the sample size n, i.e., the number of repeated experiments increases, the
shape of the histogram approaches a distribution which changes little and approximate the
probability density function (solid line) from the sample values were drawn: On the left a
sample of 100 values is used and 1000 for the plot on the right.

Note that a probability density function is a model of what we observe through statis-
tics. We can therefore abstract from a sample to obtain a stochastic model of the process
that is underlying the data. Instead of the histogram one could characterize the sample
(statistical model) or experiment (stochastic model) by some characteristic4 properties
describing effectively the curve drawn by the histogram. For this we first consider the
repeated data as referring to some real world variable (e.g. count of molecules at time t).
If the measurement or observation is subject to random variations, it would make sense
to speak of a random variable, say x. A description of a tendency for the data to cluster
around a particular point, is called the mean value. From a statistical sample {xi} withmean value

n elements, the mean is estimated as the sample average:sample average

x̄ =
1

n

n∑

i=1

xi .

Similar, a measure of variability around the mean value is obtained by the variance. Thevariance

4In Section 4.7.4 we get to know this characteristic values of a distribution as moments.
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variance is an average distance to the mean value and given a sample, we can estimate
the variance Var[x] as

σ̂2 =
1

n

n∑

i=1

(xi − x̄)2

where the ˆ is to denote the fact that this is an estimate. The squaring is necessary to
avoid an influence of the sign of the difference on the average. The problem is then that if
the values are a physical measurement with a unit, the variance would not be in this unit.
This problem can be solved to taking the square root of the variance, leading to what is
known as the standard deviation standard deviation

Std[x]
.
= σ .

We should remind ourselves of the difference of the mean value and the sample mean
or sample average. One has to do with a statistical experiment and the other with a
stochastic model of the process that generates such data. In this sense, statistics is the
real-world interface for probability theory. The mean value may also be considered an
expected value, if we are to repeat the random experiment many times we would expect
this value, on average. If our random experiment can be modelled by a probability density
p(x), where each possible value x is effectively weighted by the distribution or density p,
we could define the mean value as the expectation, E[x], of random variable x expectation

E[x] =
n∑

i=1

xp(xi) if x is discrete,

E[x] =

∫

xp(x)dx if x is continuous.

Similar, the variance can be defined as an expectation

E[(x− x̄)2] =

∫

(x− x̄)2p(x)dx .

For two random variables, x and y, the covariance is defined as covariance

σx,y
.
= E[(x− x̄)(y − ȳ)] .

If σx,y = 0, the two random random variables are said to be independent. A bounded
measure of how two variable co-vary is the correlation coefficient correlation

ρx,y
.
=

σx,y

σxσy
,

such that−1 ≤ ρ ≤ 1. A positive correlation means that as one variable increases/decreases
the other increases/decreases. Negative correlation means that as one variable increases/decreases,
the other decreases/increases.

Let us now instead of individual elements of X consider an event or set A ⊂ X defined
by its characteristic map. If we extend the concept of an expectation

E[1A] =

∫

1A(x)p(x)dx .

This in effect determines the likelihood or probability of event A, and noting that taking
the interval over X, the identity map 1A in effect restricts the interval to A, leading us to
a definition of probability : probability

P (A) = E[1A] =

∫

A
p(x)dx .
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In terms of a sample of experimental data, it would seem plausible to define the probability
then as the relative frequency:

P (A) =
number of outcomes in X where A occurs

number of elements in X
.

This is called the relative frequency interpretation for probabilities. There are therefore
different approaches to probability theory and it was the Russian mathematician Kol-
mogorov who put probability theory on a firm footing by linking probability theory to
measure theory. The probability of an event A is then the measure of the area of the
probability density function that overlaps with the subset A ⊂ X. For our purposes the
mathematical details of these definitions are not of central importance and we refer to the
vast literature on this. We do however note that a probability measure should satisfy the
following axioms:

1. 0 ≤ P (A) ≤ 1 for every event A.

2. P (X) = 1

3. P (A ∪B) = P (A) + P (B), if A and B are mutually exclusive, i.e., A ∩B = ∅.

A further refinement of our random experiment is to distinguish between the random
mechanism and an observation. Denote the sample space of an experiment with randomsample space

outcomes as the set Ω. This consists of possible individual elementary outcomes ω ∈
Ω. These outcomes are mutually exclusive, i.e., only any one of the possible outcomes
can occur. A collection of elements of Ω is called a random event and is denoted A ⊂random event

Ω. We denote by P (A) the probability that the event A will occur at each realization
of the experiment. The collection of events or subsets of Ω is mathematically defined
as a σ-algebra and denoted B. The triple (Ω, B, P ) of a sample space, sigma algebra
and probability measure is then referred to as a probability space. The variable whichprobability space

is associated with the random experiment, for example the measurement of a protein
concentration at a particular point in time, is referred to as a random variable. If Ω is arandom variable

continuous set, x is referred to as a continuous random variable and if Ω is a set of discrete
outcomes, we speak of a discrete random variable and discrete probability distribution. A
random variable x is a real-valued map defined on Ω such that for each real number α,
Aα = {ω ∈ Ω | x(ω) ≤ α} ∈ B. Aα is an event for which the probability is defined in
terms of P . A random variable is neither random, nor variable, it is simply the mapping

x : Ω → X

ω 7→ x(ω) .

Again we will drop the ω from x(ω) in most cases to simplify the notation, especially if x
is a signal that is also a function of time. Since the experiment is associated with some
random variable x, we write

p(ωi) = P (x = ωi) and p(x) or px for P (x = ω) ,

where p denotes the probability distribution, probability mass function, or probability den-probability distribution

mass function sity function. We use the term ‘mass function’ for discrete sample spaces and density
density function function for continuous sample spaces.

Talking of signals, considering a time set T ⊆ Z, a time-varying process x(t) is called
a random process if for each t we cannot determine a precise value for x(t), but instead
have to consider a range of possible values with an associated probability distribution
describing the relative likelihood of each possible value. More formally a stochastic processstochastic process

is a mathematical model of a random process, defined by the real-valued function

x : T × Ω→ X
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Fig. 2.7: Stochastic process x(t, ω) as a t-dependent random variable.
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Fig. 2.8: Stochastic process x(t, ω) as a joint function of t and ω.

such that for each fixed t ∈ T , x(t, ω) is a random variable. A stochastic process (Figures
2.7, 2.8) is subsequently a sequence of t-dependent random variables

x : T × Ω → X

(t, ω) 7→ xt .

For each fixed ω ∈ Ω the mapping from index set T into X describes a sequence of vectors
xt(ω), which is called a realization or sample function of the process. More commonly, realization

we refer to the realization of a stochastic process is a time series, i.e., a sequence of time series

observations and for which an observation at time t is modelled as the outcome of a
random variable. The collection of all possible realizations is called the ensemble. All ensemble

elements xt ≡ x(t) of a stochastic process {x(t)} are defined on the same probability
space. A stochastic process is in principle described by the joint distribution functions of
all finite subcollections of x(t)’s but since these distributions will usually be unknown, most
approaches will restrict themselves first and second order moments of the distributions,
i.e., means, variances and co-variances.

We referred to a stochastic process as a model of a random process and should add that
a stochastic model can take various forms. A dynamic model that determines or predicts
for any t a precise value x(t) is called deterministic and any model that accounts for random
variations is called stochastic. A differential equation model such as equation (2.1) is thus
deterministic. If we however add an additive noise term to this ODE model, we could refer
to this as a stochastic model. In the application of dynamic systems theory to molecular
and cell biology one generally has to make a decision whether to regard the process as a
deterministic nonlinear system but with a negligible stochastic component or to assume
that the nonlinearity is only a small perturbation of an essentially stochastic process. A
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Ω

ω

t

t1 t2

x(ω, ·)

Fig. 2.9: Realization of the stochastic process x(t, ω), ω-dependent random variable.

theory of nonlinear stochastic processes has so far not found many applications to time-
series analysis. We find that there are a large number of alternatives and combinations
and the choice to whether account for uncertainty in the model or not will depend on
various issues, including convenience and realism amongst others. This discussion how
to translate a biological process into a mathematical model makes applied mathematics
so interesting. The reader should avoid getting confused by the many alternatives and
assumptions one can consider and see them as part of the art of modelling. The great
artist Pablo Picasso once said “Art is a lie that makes us realize the truth”, to which we
might add that science is the art that makes us realize reality.

The present section introduced the basic toolkit to describe systems as sets of objects
with relationships defined on them. For the rest of this text all we do is to further refine and
extend the concepts introduced here without actually adding more fundamental concepts
than those introduced here.

2.0.4 The Systems Biology Approach

The definition of a system as a set of objects with relations defined among those objects
is not quite a proper mathematical expression and will require refinement. Instead of
focussing on things, we are going to emphasize processes5. The two things are not nec-process

essarily different: The existence or recognition of something as an object is at the same
time a process. Appearances or phenomena are entities equivalent to the act by which the
are apprehended. Likewise, a set is equivalent to the process or mapping that identifies
elements of a set. A thing is identified by distinguishing it from something else.

Formal System System Properties

Natural System Biological Attributes

deduction

interpretationmodeling (abstraction)

observation

Fig. 2.10: Mathematical modelling is a process by which we establish an abstract represen-
tation of a natural system. For a model to be a valid representation, it is necessary to relate
it with observable attributes of a biological system. Diagram adapted from [Mes68].

We are going to distinguish two kinds of systems: a natural system, which is an aspect
of the phenomenal world under consideration and a formal system, which is the math-

5A process implies succession and so we are going to describe a dynamic system as a process, i.e., a
sequence of events.
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ematical framework employed to represent the natural system (Figure 2.10). A formal
system, theory or mathematical model is a collection of concepts. Establishing relation-
ships between concepts is process of modelling . Mathematical modelling is the process modelling

by which we interpret a natural system using a mathematical model. Establishing the
validity or truth of concepts requires the a priori concepts of space and time. This may
not be obvious but if we, for example, consider the concept of a derivative, we find that
any explanation of this using pen, paper or words, will use the ideas of movement, change,
or rate of change. A mathematical model, or model for short, is thus a realization of the
formal system employed. It should not escape our notice that the process of reasoning is
a system itself. Since the world of objects is conditioned on the subject, science is not
dealing with an independent reality. It is therefore desirable for us to look out for a con-
ceptual framework in which not only to represent natural and formal systems but also the
process of modelling itself. I believe this may be found in the context of category theory.

As simple as our definition of a system, as a set of objects with relations among these,
may appear, since mathematics can be reduced to set-theoretic principles, our definition
of a system is in fact as rich as the field of mathematics itself. Since we are going to derive
every aspect of our understanding from this pair of a set and relation, we also realize the
necessity or a priori nature of mathematics to establish truth in the phenomenal world.

That there is something else than the world of phenomena or “Wirklichkeit” which we
can experience, can be seen from the fact that every argument we can establish has to have
an absolute minimum of one premise and one rule of procedure, e.g. IF p, THEN q, before
it can begin, and therefore begin to be an argument at all. So every argument has to rest on
at least two undemonstrated assumptions, for no argument can establish either the truth
of its own premises or the validity of the rules by which itself proceeds. We are therefore
limited by the third class of objects that forms one of the roots for Schopenhauer’s principle
of sufficient reason. The world as we know it, is our interpretation of the observable facts
in the light of the theories we invent. The world of objects is thus conditioned by the
subject: there is something that is grasped and something else that grasps it. In line with
Kant and Schopenhauer, the entire world of phenomena or appearances is the world of
representation in time and space, connected by causality. The world of phenomena is the
self-objectification of the noumena. The noumena is what things are in themselves, or noumena

from our systems perspective, things in themselves are understood as things apart from
relation. The existence of things independently of human representation or cognition, the
unknowability of things, is the non-relational aspect of things. Schopenhauer described
this as will. Before we further enter the slippery territory of philosophical arguments, we
return to our definition of a system as a set of objects with relations, and refine it in
mathematical terms.

With the definitions of sets and relations at hand, we rewrite our definition of a general general system

system6, which is now considered as a relation on variables/indicators/items defined in set
theoretic terms

S ⊂ ×{Oj : j ∈ J} , (2.12)

or equivalently

S ⊂ O1 ×O2 × · · · ,

where × denotes the Cartesian product and J ⊂ N. A complex system is a relation on complex system

systems/subsystems, i.e.,

S ⊂ ×{Sj : j ∈ J} ,

6The notion of a general system is due to Mihajlo Mesarovic, who developed the most general and most
complete conceptual framework for general systems [MT75]. For a comprehensive overview of systems
theory see [Kli91].
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such that there is a distinct behavior of the complex system while the integrity of the
subsystem is preserved. The characteristics of a complex system include multilevelness
and hierarchies. This definition of a complex system is more specific than the usual
interpretation of molecular and cell-systems as being complex due to the fact that usually
we are dealing with a large number of variables and nonlinear relationships among those.
More generally we consider complexity

• a property of an encoding, i.e., the number of variables in a model.

• an attribute of the natural system under consideration, e.g., the connectivity, non-
linearity of relationships.

• related to our ability to interact with the system, to observe it, to make measurement
or generate experimental data.

A mathematical model is a realization of a formal system, an abstract representation
of some aspect of the real world which is called the natural system under consideration.
The process of modelling identifies and defines the variables and relationships amongmodelling

them. For our purposes, a mathematical model is subsequently identified with a set of
parametric equations. The process of simulation is an ‘execution’ of, or ‘experiment’ withsimulation

a model. For example, in case of differential equations models, a simulation refers to
numerical integration, as the process of finding a solution to the set of equations. In case
of mathematical models that use probabilities rather than direct values, a simulation run
generates a single realization of the stochastic process.

The cell is a complex system and in studying the cell, we are considering processes and
components. The components interact through or in processes to generate other compo-
nents. We define the organization of a system as the pattern or configuration of processes.organization

Pathways are therefore an example of describing organization in cells. The structure ofstructure

a system is the specific embodiment (implementation) of processes into material compo-
nents. In modelling there is therefore a duality between abstract concepts and physical
entities. Even the most basic concepts by which we make the world plausible, ‘space’ and
‘time’ have no material embodiment and the coexistence between the physical or material
real and the mathematical or abstract should not be a real problem. In the present text
we are trying to exercise this exciting aspect of modelling in the context of cell signalling,
where the interactions of molecules lead to changes in protein concentrations, which define
a signal that in turn carries or transduces information. We are going to consider two kinds
of dynamics: intracellular dynamics and intercellular dynamics, related to the questionsinter-/intra-cellular

dynamics

How does the genome and proteins act, react and interact within the context
of the cell, so as to bring about its structure and function?

How do cells act, react and interact within the context of tissues, organs, and
the organism, so as to generate a coherent whole?

In helping answering these questions, the key to successful modelling is that there has
to be some correspondence between the causal structure of the natural system and the
formal system. The decoding of a natural system into a mathematical model needs to
be validated through an encoding that allows predictions about the natural system. In
case of molecular systems modelling is hampered by complexity, and observability, i.e., the
difficulties in making direct observations and measurements. Both, the complexity and
observability of such systems lead to uncertainty.

With all these abstract formalisms, one may ask what the practical use of systems the-
ory is. Although not simple, once it is mastered systems theory, mathematical modelling
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and simulation of dynamic systems provides a conceptual framework in which to discuss
the following questions:

What is the influence inputs have on the system?

What do the outputs tell about the system?

What are the consequences of differences in the model structure?

More specifically, related to signal transduction pathways we wish to gain a better under-
standing of the following questions:

How does the physical interaction of molecules create signals, store and transmit
information?

How are signals integrated and turned into decisions?

What is the role of space, location and translocation?

How are decisions, actions and reactions of cells integrated into higher levels of
structure, organization and response pattern?

This discussion can proceed at different levels. An abstract but also most general dis-
cussion of properties of general systems, including issue such as coordination, hierarchies,
multileveledness etc. can be conducted in the context of (2.12) [MT75]. We hereafter
follow a different strategy. We first argue the case for differential equations as a suitable
approach to represent signal transduction pathways and thereby concentrate on a special
case of the general system (2.12). Once we have shown that nonlinear state-space mod-
els are an appropriate modelling framework, we generalize our analysis of a particular
pathway model to a class of pathways.

2.1 Cell Chemistry

The cell is the basic building block of which higher organizational levels such as tissues and
organs and entire organisms are composed. This chapter is to review some basic concepts
from molecular- and cell biology. The text can however not even cover the bare minimum
of the information and a comprehensive book such as the standard text [A+02] is strongly
recommended as a reference.

The cell is a rather complex environment, consisting of many different components.
Because cells are about 70% water, life depends mostly on aqueous chemical reactions7.
These reactions occur between molecules, where a molecule is a cluster of atoms, held
together by so called covalent bonds. The weight of a molecule is its mass relative to that covalent bonds

of an hydrogen atom. The mass of a molecule is specified in Daltons, 1 Da being an atomic
mass unit approximately equal to the mass of a hydrogen atom.

moles =
weight

molecular weight
(a quantity)

One mole, 1 M, corresponds to NA
.
= 6.022 · 1023 molecules of a given substance. NA

is referred to as the Avogadro’s number. The molarity of a solution is defined by a

7There are alternative views that emphasize a gel-like character of the cell [Pol01]. The issue of what the
inside of a cell is like should be important to us in modelling the interactions of molecules. In a somewhat
brave act of modelling we later consider molecules as floating around as if they were in a gas.
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concentration of 1 moles of the substance in 1 liter of solution:

1 molar ≡ 1M ≡ 1
mol

L
(a concentration)

For example, 1 moles of glucose weights 180 g; a molar solution, denoted 1 M, of glucose
has 180 g/L. If we dissolve 1 mol in 0.5 liters, we have 2 M solution, although the amount
of substance is the same.

If molecules are clusters of atoms, held together by bonds, these bonds can be broken by
violent collisions amongst molecules. Average thermal motion does not break these bonds
and thus the breaking and making of bonds is the fundamental process that determines
the concentrations of chemical species in a reaction. This process requires energy to take
place and is carefully controlled by highly specific catalysts, called enzymes. How fast
a reaction occurs is a matter of kinetics, defined by the rate of a reaction. In general,kinetics

energy is the ability of a system to perform work, Therefore whether or not a reaction can
proceed is determined by its energetics.energetics

There are two principle types of reactions: catabolic pathways, breaking down foodstuffcatabolic pathways

and thereby generating energy and smaller building blocks. Secondly, biosynthetic or
anabolic pathways use energy to synthesize molecules. Both sets of reactions togetheranabolic pathways

constitute what is called the metabolism of the cell.metabolism

Apart from water, nearly all molecules in a cell are based on carbon. Carbon-based
compounds are used in the cell to construct macromolecules, including the nucleic acids
(DNA, RNA), and proteins. Proteins are particularly versatile, having various roles in
maintaining the function of a cell and the organism as a whole. Many proteins serve as
enzymes that are catalysts that control kinetic (bond-breaking and -making) reactions.enzymes

Other proteins are used to build the structural components that make up the cell, or
they act as motors and produce force and movement. Enzymes catalyze reactions by
binding one or more ligands which are also called substrates, and converting them into one
or more chemically modified products, without changing themselves. Enzyme-catalyzed
reactions happen faster by a factor of a million or more and are therefore an important
mechanism by which the cell can respond to changes and regulate functions. A typical
enzyme will catalyze the reaction of a thousand substrate molecules every second. The
enzyme therefore requires sufficient amounts of substrate around it. The motion caused by
collisions and thus heat energy ensures that molecules are rapidly moving about a confined
area but can also move (diffuse) wider distances. The cell is a crowded environment and
yet a small organic molecule can diffuse the entire distance across a cell in a fraction of a
second.

Enzymes move much more slowly than substrates, and the rate of encounter of each
enzyme molecule with its substrate will depend on the concentration of the substrate
molecule. For example, an abundant substrate may have a concentration of 0.5 mM and
since water is 55 M, there is only about one such substrate molecule in the cell for every
105 water molecules. Nevertheless, an enzyme that could bind this substrate would collide
with it about 500, 000 times a second.

The biological properties or function of a protein is determined by its physical inter-
action with other molecules. The substance that is bound by a protein is referred to as a
ligand for that protein.ligand

Antibodies, or immunoglobulins, are proteins produced by the immune system in re-
sponse to foreign molecules. A specific antibody binds tightly to its particular targetantibody

(called an antigen), and thereby inactivates it. Antibodies can therefore be used in ex-
periments to select and quantitate proteins. For example, considering a population of
antibody molecules which suddenly encounter a population of ligands, diffusing in the
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fluid surrounding them. The frequent encounters of ligands and antibody will increase the
formation (association) of antibody-ligand complexes. The population of such complexes
will initially increase but eventually complexes will also break apart (dissociate). Even-
tually, a chemical equilibrium is reached in which the number of association events per
second is equal to the number of dissociation events. From the concentrations of the lig-
and, antibody and the complex at equilibrium, one can calculate the equilibrium constant
Keq of the strength of binding. The same principle described here for antibodies, applies
to any binding of molecules.

We are going to use capital letters to denote molecular species, e.g., A, B, ERK, MEK.
A complex formed from proteins A and B is denoted either AB, A − B or A/B. If the
molecules are not referring to particular names, like A and B, we usually write AB for the
complex. For known proteins, e.g., Ras∗ and Raf we write Ras∗/Raf. In some cases the
protein complex gets a separate name, e.g., for the MAPK/ERK complex we write MEK.
Considering a reversible reaction A + B ↔ AB, for dissociation the reaction diagram is

AB
kd−→ A + B ,

where the dissociation rate equals the product of kd and the complex concentration (AB). dissociation rate

Note that in the reaction diagrams the symbol denote molecular species while in math-
ematical equation we use square brackets to distinguish concentrations from counts of
molecules. For the association of molecules,

A + B
ka−→ AB ,

the association rate is the product of ka, A and B. At equilibrium, association rate

kaA ·B = kd(AB)

and which leads us to the definition of the equilibrium constant equilibrium constant

Keq =
AB

A ·B =
ka

kd
. (2.13)

The equilibrium constant has a unit of liters per mole. The larger the equilibrium con-
stant, the stronger the binding between A and B. For example [A+02], considering 1000
molecules of A and 1000 molecules of B, with concentration 10−9 M. For Keq = 10−10 of
the reversible reaction

A + B ↔ AB ,

there will be 270 A molecules, 270 B molecules and 730 AB molecules. For a reduction
in binding energy of 2.8 kcal/M, reducing the equilibrium constant to Keq = 10−8, there
will be 915 A molecules, 915 B molecules, and 85 AB molecules. For every, 1.4 kcal/M
of free energy drop, the equilibrium constant increases by a factor of ten. Note that for
the system to be in equilibrium, there is a flow of mass or material. In later sections we
introduce the concept of steady state, for which changes in concentrations are zero. In
dynamic systems theory, a steady state is sometimes also referred to as an equilibrium so
that there is a risk for confusion. For the biochemist a biological system in equilibrium is
dead.

2.2 Cell Signalling

For cells to combine into networks that realize higher levels of organization, including for
example tissue and organs, it is necessary for them to communicate, exchange informa-
tion. The basis for this intercellular signalling are the receptors in the cell membrane.
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The transmission of extracellular information to the genome is referred to intracellular
signalling. Inter- and intra-cellular information effects the transcription of information
from the genome and the synthesis of proteins. For more comprehensive discussions of cell
signalling see [Dow01, Han97]. The glossary on page 226 provides help with unfamiliar
terminology.

Environmental
Signal Cell Surface Receptor

(Sensor Kinase)

Intracellular
Protein

Cell Membrane

Phosphatase

Response
Regulator

Phosphorylated
Protein

RNA
Polymerase

Promoter Operator Gene(s)

P

P

DNA

Fig. 2.11: A drastic simplification of intra-cellular signalling. Extracellular stimulation of the
receptors is transduced into the cytoplasm. A series of biochemical reactions transmits the
signal towards the genome, where the transcription of genes can be affected as a consequence
of receptor stimulation.

The transmission of information is realized by chemical reaction networks, called path-
ways. Signals, passing these networks, are realized through changes in concentrations.
The cell membrane and the nucleus in eucaryotic cells form physical barriers. There
are principally two ways to pass these barriers - through active transport of molecules
passing through the cell surface (e.g. via pores or gap junctions) or nucleus or via sig-
nal transduction, i.e., receptor stimulation and phosphorylation as a means to transmit
information without the movement of molecules. We may refer to these two modes of
signalling as the “radio” versus “courier” mode of signal transmission. The location of a
signalling molecule within the cell affects the interaction with other proteins and hence
the movement of molecules to different cellular locations, called translocation, influencestranslocation

the dynamics of a signalling pathway.

nucleuscell-surface-receptor

Ligand

intracellular receptor

��

��
��

��

Fig. 2.12: Left: Most commonly receptors are bound to the transmembrane, where they
bind an extracellular signal molecule (Ligand). Right: Small signaling molecules can enter
the cell where they activate receptors inside the cell.

We are here going to focus on receptor-ligand signalling where extracellular molecules
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that bind to receptors in the cell membrane are referred to as ligands. Extracellular ligand binding

signalling molecules include hormones, cytokines and growth factors. Usually extracellular
signals are found at very low concentrations, in the order of 10−8 mol/L [Han97]. Binding
to receptors is highly specific to particular ligands. Not all ligands that bind to receptors
result in the activation of that receptor. Ligands that bind to receptors and thereby prevent
activation, are called antagonists. Denoting the ligand with a ‘L’ and the receptor with
‘R’, ligand binding to monovalent receptors with only one binding site can be described
as a reversible reaction

L + R
k1−→←−−
k2

LR .

The ratio of the concentrations, where 50% of the ligands are bound to receptors, is defined
as via the dissociation constant dissociation constant

Kd =
R · L
LR

=
k2

k1
.

The lower the Kd value, the higher the affinity of the receptor for its ligand. Generalizing8

the principle of mass action a mathematical model of monovalent receptor binding is given
by the equation

d(LR)(t)

dt
= k1L(t)R(t)− k2LR(t) ,

where k1 (M−1sec−1) describes the rate constant of the receptor-ligand interaction and k2

(sec−1) describes the rate constant of the breakdown of the ligand/receptor complex LR.
Solving this differential equation provides us with an equation for the temporal evolution
of the ligand/receptor complex LR(t). We got a bit ahead of ourselves here by jumping to
this differential equation. In subsequent sections we are going to discuss ways to establish
such differential equation models and compare it with alternative formulations9. We return
to receptor modelling in Section 7.

extracellular signaling molecule

intracellular
signaling
proteins

target
proteins

cytoskeletal proteins alter-
ing cell shape and move-
ment

gene regulatory proteins
altering gene expression

metabolic enzymes alter-
ing metabolismreceptor protein

Fig. 2.13: Basic molecular components involved in intracellular signaling.

The consequence of signalling through ligand-binding is in most cases a modification
of the activity of intracellular enzymes or activation factors (e.g. transcription factors that
determine the reading or transcription of information encoded in the genome). A change
in enzyme activity is achieved through a change in its conformation (three-dimensional
structure). The altered spatial arrangement of the active site (amino acids) reduces or
increases the protein’s catalytic action and binding to substrate.

One of the most common ways to alter the spatial arrangement and hence the prop-
erties of a protein is by adding of one or more phosphate groups, a process known as

8The term ‘generalized principle of mass action’ indicates the fact that we are not strictly use this
balance principle. For various reasons, including the indirect measurements in cell signalling, the dif-
ferential equation models described here are in most cases phenomenological models rather than exact
representations of physical interactions among molecules.

9Specifically for mathematical models of receptor binding the work of Lauffenburger and colleagues is
notable [LL93].
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ATP ADP ATP ADP

MAPK MAPK-P MAPK-PP

P P

d
dt

MAPK-P = v1 − v3 − v2 + v4

v1 v3

v4v2

Fig. 2.14: Phosphorylation and dephosphorylation steps in the MAPK pathway.

phosphorylation. The enzymes that catalyze protein phosphorylation are known as pro-(de)phosphorylation

tein kinases or kinases for short. The reverse process of dephosphorylation is catalyzed bykinases, phosphatases

phosphatases. Protein kinases and phosphatases are signalling molecules which catalyze
the transfer of a phosphate group supplied by adenosine triphosphate (ATP) to and from
target proteins respectively. The transfer ends with the release of adenosine diphosphate
(ADP). The transfer of the phosphate group occurs only at specific binding sites, i.e.,binding sites

specific locations or amino acids of the target protein. The amino acids in the primary
sequence of the polypeptide at which phosphorylation takes place are serine, threonine,
and tyrosine. The kinases are grouped according to which amino acid they are specific
for. Tyrosine protein kinases catalyze the phosphorylation of tyrosine residues, while ser-
ine/threosine protein kinases catalyze the phosphorylation of serine or threonine residues.
Some protein kinases (such as MAPK) can act as both, tyrosine and serine/threosine ki-
nases. Phosphorylated residues in a protein can act as binding sites for specific recognition
domains in other proteins. A domain in a protein is a self-folding unit with a particulardomains

sequence and conformation. Certain domains allow proteins to recognize each other. Phos-
phorylation is thus a mechanism by which protein complexes can assemble. This results in
a change of the localization or activity of enzymes. Phosphorylation/dephosphorylation
is a good regulatory mechanism since it can occur in under one second [Han97]. Further-
more, the activation of a single kinase molecule results in the phosphorylation of many
enzymes and therefore result in an amplification of the intracellular signal.amplification

While there are a vast number of proteins involved in signalling, many of the proteins
are similar in the sense that they consist of components (domains, modules, motifs), some
of which are found in many otherwise different protein molecules. At the amino acid
sequence level, this similarity is expressed as homology . It is therefore in some sense nothomology

just the protein as such but particular aspects of it which determines its role in signalling.
Because the properties of proteins and hence their ability to interact depends on whether
they are in a phosphorylated or dephosphorylated state, in mathematical modelling we
are going to introduce two variables for each of the states.

In response to signals important cell functions are influenced. These include

• cell death (apoptosis)

• cell growth (proliferation)

• specialization (differentiation)

• stress response

• cell cycle control

Cell signalling is therefore of relevance to the development of an organism and the onset
of disease. For example, cancer is a disease of uncontrolled cell proliferation.
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2.3 Experimental Techniques

This section is intended to provide a few notes on experimental aspects to investigate
signal transduction10. For more comprehensive information on principles and techniques
of practical biochemistry we refer to [WW00]. The motivation is that for mathematical
modelling of signal transduction pathways it is important to appreciate the difficult and
often indirect process by which information about the relationships and interactions among
proteins are identified. A major challenge for the field of systems biology is to have
available advanced measurement technologies to quantify protein concentrations. The
purpose of this section is therefore to indicate the difficulties in obtaining quantitative
data. Molecular and cell biology has been driven by the development of technologies to a
large extend. With the current speed at which new tools become available, one can expect
major changes to our understanding of how the cell functions11.

2.3.1 Gel Electrophoresis

Macromolecules, i.e., proteins or nucleic acids such as DNA and RNA, are commonly
separated by gel electrophoresis. This method uses gels made of agarose for DNA and
RNA, or polyacrylamide (PAA) for proteins. The sample is loaded on the top, or one end
of the gel, and an electric field is used to pull the samples through the gel. As the gel is
like a sieve the proteins or nucleic acids are separated by size. Big proteins move slower
than small proteins. The resolution depends on the pore size and is only optimal for a
certain size range. This is why agarose with wide pores is used for the large nucleic acids
and PAA with smaller pores for the smaller proteins. Varying the concentration of PAA
allows to adjust the size bracket for optimal resolution. For instance, proteins between 200
- 70 kDa are well resolved by 7.5% PAA gels; proteins between 120-30 kDa are resolved
on 10% PAA gels; and proteins between 50-10 kDa are resolved by 12.5% PAA gels.

2.3.2 Blotting

This is the transfer of macromolecules out from the gel onto a membrane, in order to make
the separated macromolecules accessible, for instance, when other macromolecules are to
be used as probes to specifically detect one of the separated macromolecules. Blotting can
be done by various means. Traditionally, nucleic acids are blotted by capillary action as
shown in Figure 2.15, where a stack of dry papertowels is used to draw the buffer from a
tray at the bottom through the gel.

The membrane with DNA on it is called Southern Blot12. If RNA is blotted, it is
called a Northern Blot. If proteins are blotted, it is called Western blot.

Proteins are usually transferred by electroblotting (Figure 2.16), i.e., through an elec-
trical field. The Western blot is then incubated with antibodies against the protein of
interest, (e.g. Ras) and washed several times. The antibody against the protein of inter-
est is called the primary antibody. The Ras antibody will bind to the Ras protein band
on the blot, but will be washed off everywhere else. Then, the blot is incubated with a
so-called secondary antibody and washed again several times afterwards. Then the blot is
developed with chemiluminescence (see Figure 2.17). The secondary antibody will specif-
ically bind to the primary antibody. For instance, if the primary antibody was raised in
a rabbit, the secondary antibody is an anti-rabbit antibody, i.e., a Immunoglobulin, Ig; if

10The text is based on notes kindly provided by Walter Kolch.
11We cannot do justice to the technologies involved and the reader is advised to consult the literature for

more information. Major technological breakthroughs are reported in journals such as Nature and Science.
12The procedure is called Southern blotting as it was invented by a Dr Southern.
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Stack of dry papertowels{The papertowels draw the
buffer through the gel by
capillary action Blotting membrane

Gel

Paper wick

Tray with Blotting Buffer
(=Salt Solution)

Fig. 2.15: Blotting is the transfer of macromolecules out from a gel onto a membrane.

+electrode – electrode
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current flow

Tray with Blotting Buffer
(=Salt Solution)

Fig. 2.16: In Western blotting proteins are usually transfered on to a membrane by elec-
troblotting, i.e., through an electrical field.

the primary antibody was made in a mouse, the secondary antibody is an anti-mouse anti-
body etc. The secondary antibody is conjugated, i.e, covalently coupled, with an enzyme
called horse-radish peroxidase, HRP. After the final wash the blot is overlaid with a thin
layer of buffer containing hydrogen peroxide (H2O2), iodophenol and a chemiluminescent
substrate, luminol, which will emit light when oxidised. The HRP conjugated to the sec-
ondary antibody will use the hydrogen peroxide to oxidise the luminol. The reaction is
enhanced and prolonged by iodophenol. Therefore, light is produced at the place where
the secondary antibody is bound. This will give a band on a film. The light emission lasts
for about one hour. The buffer is wiped off, so that the blot stays damp and the blot is
quickly exposed to film to detect the light emission. This is the band under consideration.
The detection procedure is called ECL (Enhanced ChemiLuminescence)

2.3.3 Scanning and Laser Densitometry of Western Blots

The band on the film is scanned and then quantified by laser densitometry before image
processing takes place. Care must be taken that the blots are not overexposed as one
quickly is out of the linear range and goes into saturation. The linear range of film is not
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Fig. 2.17: Illustration of western blotting, the use of antibodies in separating proteins and
how the presence of proteins is made visible.

more than approximately 20, i.e., bands which differ by signal intensity of 20 fold or less
are reliably quantified. This linear range is most of the times sufficient unless one has very
strong and very weak bands on the same blot. Then one has to scan different exposures
of the blot and extrapolate. This is rather accurate, but is also labor intensive.

2.3.4 Quantification of Western blots - General Considerations

Important considerations for modelling are:

1. A Western blot shows relative changes between the samples on the blot!

2. Different Western blots cannot be directly compared to each other!

3. A Western blot does not give you information about the concentration of a protein!

The reasons for that are many: The intensity of the bands, or signal intensity, depends on
how long the ECL solution was incubated, how fast and how long the blot was exposed to
film. For practical reasons these parameters are impossible to standardize. For instance,
if the first exposure is under- or overexposed, then you have to put on another film - and
everything has changed. Another reason is the affinity of the antibodies. Each antibody
has a different affinity for its protein antigen. Typical Kd values are between 1× 106 and
109. Thus, a good antibody will give a strong signal even with little protein present, and
a poor antibody will give a weak signal even when lots of protein is present. Antibodies
are proteins and therefore perishable molecules. There is batch to batch variation and
also storage conditions can affect the affinity. These considerations apply to the primary
and secondary antibody. Therefore, the observed signal intensity is a composite of the
concentration of the protein antigen, the antibody affinities, the ECL conditions, and the
exposure time of the film.

Thus, the only way to determine protein concentrations in a cell, is to compare the band
intensity obtained from a cell lysate to that of a purified protein of known concentration.
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Fig. 2.18: Southern blotting. In Step 1, DNA is extracted and cleaved. In Step 2 the
cleaved DNA fragments are separated according to their size using agarose gel electrophoresis.
In Step 3 and after alkaline denaturation, the DNA fragments are replica-transferred to a
nitrocellulose membrane, the blotting. In Step 4, hybridization with a radiolabelled probe
takes place and is made visible with autoradiography.
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For instance, to determine the concentration of the ERK protein in different cell lines,
lysates of these cells were run alongside a serial dilution of a purified, recombinant ERK.
The densitometric scan values of this series is used to make a standard curve. “Standard”
in biochemical terms means value for comparison. The standard curve should be a straight
line, otherwise one is outside the linear range of the scanning. This curve relates protein
concentration to densitometric scan units. These are the numbers from the scanner; they
are arbitrary units. The concentrations of ERK in the different cell lines can be determined
by mapping the scan units of the cell lysate to the standard curve. For the reasons
mentioned above it is essential that the samples used to make the standard curve are
highly pure, as the measured protein concentration reflects the quantity of the protein of
interest plus any contaminating proteins. The purification of a protein to near homogeneity
is extremely tedious. This makes the determination of absolute protein concentrations in
cells so difficult and slow.

2.4 The Dynamic Proteome

Before we continue with further mathematical refinements of our system (2.12), in this
section we briefly discuss the background to this.

The area of cellular signalling investigates intracellular communication. The transmis-
sion of information within cells from receptors to gene activation by means of biochemical
reaction networks (pathways) impinges on the development and disease of organisms.
Our aim is to establish a mathematical/computational framework in which to investigate
dynamic interactions within and between cells. In other words, we are concerned with
dynamic pathway modelling since we do not simply map or list proteins in a pathway. dynamic pathway

modellingSpatial-temporal sequences of reaction events in a biochemical network form the basis for
signals, a non-physical concept used to describe the information processing, regulation and
control in cells. The objective of dynamic pathway modelling is to establish mathematical
models that allow us to predict the spatio-temporal response of protein concentrations
and gene expression to pathway stimulation.

Mathematical modelling and simulation of molecular or cellular biological systems is
challenging. We consider such systems as ‘complex’ for the following reasons. A collection
of cells, but also an individual cell consist of many interacting subsystems. For example,
choosing any particular pathway there will be other pathways that “cross talk”. Due to
the complexity of experiments to generate data and the sometimes complicated maths
involved, we usually consider one pathway, or particular aspect of one pathway at a time.
Since these systems (pathways) are interacting at different levels and in hierarchies, mod-
elling is bound to be an art rather than an objective science. Although spatial aspects
of the location of molecules in the cell, related diffusion or the transport of molecules,
can in principle be encoded, for example, by partial differential equations, the available
mathematical tools are often not easy to apply. Mathematical convenience is therefore
one reason to make assumptions. Whether the underlying process is inherently random or
deterministic may introduce further questions to how we represent this. For the kinetics of
biochemical reactions, nonlinear ordinary differential equations are most commonly used
for modelling while stochastic simulation is a popular avenue to avoid the complicated
formal analysis of stochastic models.

The number of molecules involved in the processes under consideration and the fre-
quency by which reactive events occur will also influence the decision to whether a ba-
sic model consisting of ordinary differential equations will suffice to represent observable
phenomena. The latter point is important - we should be able to validate our models
with experimental data, as otherwise we do not contribute to a better understanding or
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hypothesis

design of experiments

data

modelling

simulation

Fig. 2.19: Systems biology requires an iteration of the modelling loop illustrated here. The
diagram shows the role of mathematical modelling and simulation in testing hypotheses but
also in generating hypotheses through prediction. The purpose of modelling is to support
experimental design, helping to identify which variables to measure and why.

knowledge. In molecular biology experiments are typically expensive, time consuming un-
dertakings, which in most cases deliver data sets which fall short of the expectations of
statisticians or mathematicians. In contrast to the engineering sciences, the observation
of molecular or cellular dynamics are indirect, i.e., it is as yet not possible to obtain a
continuous stream of accurate, quantitative measurements of an intact living cell. Exper-
iments are usually destructive with regard to the components of the cell, or in order to
visualize effects it is difficult not to alter the state of the system, even if only slightly.
Although there is a trend towards single cell measurements, to this day we are studying
the processes within a single cell by using thousands or millions of cells in a biochem-
ical experiment. While statisticians would usually argue the context in which the data
are generated should be irrelevant, for the analysis of molecular- or cell biological data
the context in which the data were generated is crucial information to allow any sensible
conclusion. It can therefore not be avoided that our models are representations of obser-
vations that help us to speculate about the true nature of the physical processes which
give rise to signals and communication within and between cells. For example, when we
observe steady changes of protein concentrations in a signal transduction pathway, we
may want to model this phenomena with differential equations, although the underlying
reactions, due to collisions of molecules, may in fact be a random process. If we insist on
a stochastic model, we immediately need to consider the question of how to validate the
model, i.e., how to estimate parameter values given only six to twelve time points of a
nonlinear, non-stationary process.

Modelling implies a process of abstraction and is often also a form of generalization.
In this process we make numerous assumptions about the natural system under consider-
ation and in order to simplify the mathematical approach, without loosing the ability to
make predictions. It is therefore possible to build predictive models without them being
precise. The Lotka-Volterra predator-prey equations of two competing populations are an
example of an unrealistic model that has nevertheless value in that it helps asking the right
questions13. Mathematical modelling and simulation should in this sense complement the
biologists reasoning, help him to generate and test hypotheses in conjunction with the
design of experiments and experimental data.

In subsequent sections we investigate the mathematical foundations of the most com-
monly employed mathematical concepts in modelling pathways, discuss their properties,
question the assumptions involved and compare their application with examples.

13Murray, [Mur02] provides a discussion of the standard Lotka-Volterra system and how more realistic
scenarios can be dealt with.
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2.5 Zooming In

The simple unassuming formal definition of a general system as related objects

S ⊂ ×{Oj : j = J} , (2.14)

does not immediately give away the incredible richness of methodologies and tools that
it makes available. Indeed, Mesarovic’s general systems theory [MT75] is providing a
framework that generalizes virtually all system approaches, used in the natural, physical
and engineering sciences. Systems theory tells us that in order to understand a dynamic
system, i.e. to the behavior or functioning of a system, we need to perturb it systemat-
ically. Given a set of mathematical equations, in order to be able to identify parameter
values from experimental data the system has to be stimulated and a response recorded.
For example, in cell signalling we add receptor-binding ligands to a culture and record
successive phosphorylations of molecules in the pathway. Emphasizing the fact that cell
functions are dynamic processes, in (2.14), we distinguish objects relating to the stimulus
and response, i.e., Ω respectively Γ

S ⊆ Ω× Γ .

A system is therefore defined in terms of the elements in Ω and Γ, which it associates.
Next, we introduce the notion of a signal, defined as a mapping from a linearly ordered
index- or time-set I into a set of values (e.g. protein concentrations). For the stimulus we
write

ω : I → U ,

and for the response
γ : I → Y ,

where for say concentrations U ⊆ Rm
+ and Y ⊆ R

q
+. For m = 1 and q = 1 the vector-valued

notation reduces to a single signal or time series. A particular point in time is denoted
t ∈ I. If I = Z+ we have a discrete-time system, which corresponds to the collection
of experimental data, and in which case we could consider Ω and Γ as finite-dimensional
vector spaces

ω =
(
u(0), u(1)), . . .

)
,

γ =
(
y(1), y(2), . . .

)
.

In modelling it does often make sense to assume a signal that is continues in value and
time. For I = R+ a continuous-time system, with ω : (t1, t2]→ U in Ω and γ : (t2, t3]→ Y
in Γ. The entire sets of stimuli and responses form the objects of our definition of an
input-output system (2.5):

Ω = {ω : I → U} ,

Γ = {γ : I → Y } .

For a mathematical relation, an element of Ω can be associated with more than one element
in Γ. For a dynamic and causal system, we allow only one response to any particular
stimulus14 and hence a general dynamic system is now defined as a mapping

S : Ω→ Γ . (2.15)

The model (2.15) of a general, dynamic system encompasses most, if not all, formal models
that are considered in the engineering and physical sciences, applied mathematics and

14This restriction of a relation to a mapping, by considering associating only pairs of elements, does
allow more than one stimulus leading to the same response.
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molecular and cell biology. Whether we model with differential equations, with automata,
numerical values or symbols, deterministic or stochastic, (2.15) is the unifying abstraction.
The aim for modelling at this level is the discovery of universal or generic organizing
principles, that are independent of a particular realization, parameter values, cell line or
organism.

We are going to consider a dynamic systems approach to understand inter- and in-
tracellular processes. To identify a system’s behavior we require stimulus-response time
course data. For most molecular and cell biological experiments it is not straightforward to
generate sufficiently rich and quantitative data sets that satisfy the theoretician. The rich-
est set of system-theoretic methods is available for time-invariant linear systems. Timetime-invariant systems

invariance means that although the system variables change over time, the relationships
among the variables do not. If we were to repeat an experiments the same mathematical
relationships would be identified. The definition of linearity deserves attention as differentlinearity

scientific communities have different interpretations. For example, the standard model
of a MAP kinase pathway is a linear cascade of three modules (cf. Figures 8.5 and 8.6).
Linearity in this context refers to a series connection of modules. Any feedback loop
branching of one of these modules and influencing a variable further up in the pathway
is occasionally described as nonlinear feedback. This is rather unfortunate and should be
avoided. Let yt(θ, ut) be the output of the model15 with parameters θ at time t and which
is due to the input u(τ), which has been applied from initial conditions between time zero
to t, 0 ≤ τ ≤ t, t ∈ R+. A model is said to be linear in its inputs (LI) if the outputs
satisfy the superposition principle with respect to the inputs, i.e., if

∀(α, β) ∈ R2, yt

(
θ, αu1(t) + βu2(t)

)
= αyt

(
θ, u1(t)

)
+ βyt

(
θ, u2(t)

)
. (2.16)

A system is thus nonlinear if the output from the system is not proportional to the input.
If we draw a graph of the output against the input on the abscissa, a linear system would
define a straight line while a nonlinear system would diverge from the straight line. While
this definition is common in engineering and applied mathematics, statisticians usually
refer to a different kind of linearity: A model is said to be linear in its parameters (LP) if
its outputs satisfy the following superposition principle with respect to its parameters:

∀(α, β) ∈ R2, yt

(
αθ1 + βθ2, u(t)

)
= αyt

(
θ1, u(t)

)
+ βyt

(
θ2, u(t)

)
. (2.17)

For example, the simple straight line equation y = θ1x + θ2 is LI and LP. We are going to
return to a discussion of the difference between linear and nonlinear systems on page 149.

If S is linear and time invariant, we can express the relationship between dependent
and independent variables by the following equation:

y(t) =
t−1∑

k=0

Θt−ku(k), t ∈ T . (2.18)

where Θt ∈ Rp×m denote the coefficient matrices which characterize the process and we
have assumed a time-discrete system, i.e., T ⊂ Z+. For each t, (2.18) specifies a set of q
equations in q ·m unknowns of the matrix Θt. We find that for the linear system there
exist a one-to-one correspondence:

S ∼= {Θ1, Θ2, Θ3, . . .} .

If a system is linear, or if we can approximate a nonlinear system appropriately as a linear
system, there is a well developed toolbox available to analyze and predict the behavior of

15Note that we slipped the time dependence from the brackets, y(θ, u(t), t) into the subscript yt. This
is to simplify the notation with no other meaning.
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such systems and to identify the parameter values for a model from experimental input-
output data. The representations above are also referred to as external since it considers
inputs and outputs but does not make an explicit reference to internal states of the system.
The internal states of a system can be introduced by means of a state-space X. state-space

While the stimulus-response model (2.15) is a suitable reflection of experimental re-
ality, i.e., we observe the temporal response to some stimulus, the aim of modelling is to
hypothesize about the in-between the input and output spaces of a system. The purpose
of dynamic pathway modelling is to speculate about the internal structure of the system,
which generates the data. For the mathematical models of pathways we therefore repre-
sent the natural system under consideration by means of a set X. Diagrammatically the
model (2.15) can therefore be extended to the state-space representation:

Ω Γ

X

Mathematical modelling of pathways is the process by which we identify and characterize
the mathematical objects Ω, Γ, X as well as the mappings that put these objects in
relation to another. In conventional state-space modelling the dynamic nature of the
model is reflected in the existence of a state-transition map

ϕ : I × I ×X × Ω → X

whose value is the state x(t) = ϕ(t; t0, x, ω), that is, an element of the state-space X. In
this setting, the state x at time t arises from an initial state x0 = x(t0) ∈ X at some
initial time t0 ∈ I under the action of stimulus ω ∈ Ω. The graph of ϕ in I×X, called the
trajectory and describes the temporal evolution of the system. If we are to investigate a
pathway or cell function in experiments we assume that, at least for the experiment, the
system is time invariant, i.e.,

ϕ(t; t0, x, ω) = ϕ(t + s; t0 + s, x, ω′)

for all s ∈ I. A dynamical system is continuous-time if I is a set of real numbers and
discrete-time if I are integers. S is finite dimensional if X is a finite-dimensional space
and we speak of a finite-state system if X is a finite set. A finite system is more commonly
known as a automaton.

The introduction of a state space X leads us to the state-space model , which for state space
representationdiscrete-time16 takes the form

x(t + 1) = φ
(
x(t), u(t)

)

y(t) = h
(
x(t), u(t)

)
,

and for continuous-time (see also Figure 2.20)

ẋ = φ
(
x(t), u(t)

)
: state-transition map (2.19)

y(t) = h
(
x(t), u(t)

)
: output map . (2.20)

We have used here the compact notation ẋ to denote the time derivative dx/dt. Further-
more, x(t) is in general as a n-dimensional vector x = (x1, . . . , xn). n is thus a constant

16When we write x(t + 1) we assume a fixed sampling rate with equidistant sampling intervals. In
biological experiments measurements are however often taken with increasing intervals in between sampling
points. Curve fitting and interpolation techniques can then be used to adjust the data for this purpose.
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used to denote the number of variables or equations. Unfortunately, the letter n is rather
popular and in the context of stochastic modelling we are going to use it for an entirely
different purpose, to denote the state vector that describes the number of molecules of a
population at time t.
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Fig. 2.20: Sampling and approximation of signals. (a) Experimental data define only points
and in biological experiments measurements are frequently taken at equidistant time points.
(b) The common representation of data as a line plot implies a model of linear interpolation,
ignoring any possible random fluctuations. (c) For system identification and parameter
estimation, it is usually assumed that measurements are sampled at equally spaced intervals.
(d) In some cases it may be feasible to fit a curve through the points and model changes with
a continuous-time model. It could however be the case that the dip at the third time point
is not an outlier but rather an important biological aspect. Which assumption is correct
depends on the context in which the data are generated.

For the example of a linear discrete time-invariant system, (2.18), the relationship
between input u(t) and output y(t) is linear. Let U ⊂ Rm, Y ⊂ Rq, Θ(t) ∈ Rp×m,
the system can then also be represented in a canonical form using matrices F ∈ Rn×n,
G ∈ Rn×m and H ∈ Rn×q

Θ(t) = HF t−1G t = 1, 2, . . .

The problem of modelling is then to define the dimension of X, for which the sequence
Θ1, Θ2, . . . is uniquely determined; leading to the discrete-time state-space model17:

x(t + 1) = Fx(t) + Gu(t)

y(t) = Hx(t) x(t0) = x0 .

Given the present state x ∈ X defined by x(t) and input u(t) ∈ U the map φ determines
the next state and for every state x, the output map h determines an output y(t). It is
usually assumed18 that X is equal to or a subset of the Euclidean space of real numbers,
Rn = R1 × · · · × Rn, and thereby any state can be represented as a point19 in X. Note

17Any control engineering textbook will provide further reading on properties of such systems, and how
the matrices can be identified from experimental data.

18There are a number of mathematical requirements associated with the definitions and reasoning in
this section. We leave these details for later chapters and refer to the extensive literature in mathematical
systems and control theory, including for example [Son98], [Nv90], [Isi89] and [Bel90].

19A dynamical system is finite dimensional if X is a finite dimensional linear space; it is finite state if
X is a finite set. If X, U , and Y are finite sets and the system is discrete time, it is known as a (finite)
automaton.
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that the concept of state is a general notion, defining a set of n state-variables such that
the knowledge of these variables at some initial point in time t = t0 together with the
knowledge of the input for t ≥ t0 completely determines the behavior of the system for
any time t ≥ t0. State variables need not be physically measurable or observable quantities.
The state-space representation is well established and forms the basis for automata theory
and control theory. An automaton is a discrete-time system with finite input and output automaton

sets U and Y , respectively. We say the automata is finite if X is a finite set20. Automata
theory has been used to model numerous systems including gene networks. However, we
note that the finiteness of spaces, in which the inputs and outputs take their values, may
require a quantization of measurements and discretization. With typically short time series
and a lack of replicate measurements this may imply an unreasonable loss of information.
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Fig. 2.21: Quantization of signals. Using a threshold on the amplitude of a signal, we can
convert the data into a binary signal suitable for modelling boolean networks.

The state-space representation introduced above may look fairly general but there are
more general cases to consider. For example, consider the state-space system

ẋ(t) = φ
(
x(t), u(t), w(t), t

)
, x(t0) = x0

y(t) = h
(
x(t), u(t), m(t), t

)
,

(2.21)

where φ can be changing with time and {m(t)}, {w(t)} are stochastic processes. Repre-
sentation (2.21) is usually too general for a detailed mathematical analysis of a specific
model. The first step to a tractable model is by assuming that φ is not dependent on time,
i.e., the system is autonomous21 or time-invariant autonomous systems

ẋ(t) = φ
(
x(t), u(t)

)
.

Let us look at an example of the system above. In subsequent chapters, we are consid-
ering molecular populations that change as the result of chemical reactions. Under the
hypotheses that all elementary reactions obey first-order kinetics and the compartment in
which the reaction takes place has a constant temperature, the generalized mass action
model is given by the set of coupled equations

dx1

dt
= −θ1x1 + θ2x2

dx2

dt
= θ1x1 − (θ2 + θ3)x2

dx3

dt
= θ3x2 .

The structure of this mathematical model is given by prior knowledge or hypotheses about
the system. The parameters θi are kinetic rate constants of the elementary reactions, and

20The state of a linear dynamic system, continuous-time or discrete-time evolves in Rn, whereas the
state of an automaton resides in a finite set of symbols.

21The term autonomous is more frequently used in the context of differential equations, while time-

invariance is more commonly used in the context of applications of differential equations to natural systems.
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the state variables x1, x2, and x3 are the concentrations of the reacting chemical species.
All of them therefore have a precise meaning and interpretation22. These kind of mod-
els, describing observed changes, are therefore also referred to as phenomenological or
knowledge-based models. Identifying the parameters of such a model from experimentalphenomenological

models data is called parameter estimation, and for nonlinear differential equations relies on so-
phisticated statistical tools. The decision of a model structure and parameter estimation,
together are referred to as system identification.

The main question in the following sections is how non-stochastic and stochastic rep-
resentations of pathway dynamics compare. While in principle it is possible to allow for
random variations of the states, which in (2.21) is due to w(t), one often assumes a noise-
free state equation but includes measurement noise m(t) in the observation of the system

ẋ(t) = φ
(
x(t), u(t)

)
,

y(t) = h
(
x(t), u(t)

)
+ m(t) ,

(2.22)

where m(t) is referred to as measurement noise or just noise. For measurement noise one
usually assumes a Gaussian process {m(t)}, for which the joint probability distribution of
{m(t)} is multivariate normal. Randomness of the states leads to stochastic differential
equations.stochastic differential

equation ẋ = φ
(
x(t), w(t)

)
,

If w(t) is considered to a Gaussian process this representation is called Langevin equation:

ẋ = φ
(
x(t)

)
+ G

(
x(t)

)
w(t) ,

where G is a matrix.

Differential equations describe rates of changes and thus appear to be a natural frame-
work to describe the observations we make in experiments. Differences and changes are
what we can observe and what provides us with information about a system. The state-
transition map, (2.19), describes the changes of states. Causal entailment is the principal
aim of scientific modelling and that causation is the principle of explanation of change in
the realm of matter. However, in modelling natural systems, causation is a relationship,
not between things, but between changes of states of systems. This view that changes
in space and time are the essence of causal entailment has been well explained by the
philosopher Arthur Schopenhauer who argued that the subjective correlative of matter or
causality, for the two are one and the same, is the understanding :

“To know causality is the sole function of the understanding and its only
power. Conversely, all causality, hence all matter, and consequently the whole
of reality, is only for the understanding, through the understanding, in the
understanding.” [Mag97].

In experiments we usually look for differences but in our context of a dynamic systems
perspective we are particularly interested in change over time. We can distinguish between
a difference and a change, providing an example that also illustrate a difference between
bioinformatics and systems biology. Let us consider the following picture as a toy modelbioinformatics

for two genomes:

22In subsequent chapters we are going to use a different notation for biochemical reactions. The one
based on xi is commonly used in applied mathematics and in the context of differential equations. In
biochemistry capital letters and square brackets, [Si], are used to denote the concentration of a molecular
species Si.
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Comparing the two, there are 28 = 256 pattern to discern. For example, from comparative
genomics we know that genome sequences can be very similar, while the organisms, their genomics

physiology, behavior and appearance are very different. One then wonders how this dif-
ference in complexity is possible if the genetic material appears to be so similar. Another
example is the total metamorphosis of butterfly, there is one genome but essentially two
proteomes. An explanation is that the genome may provide the basic information for an
organism to develop and function, but that it is the dynamic interactions of molecules and
components in the cell that give rise to biological functions. If we therefore consider again
our toy model, allowing the eight genes to be switched on or off in a temporal sequence,
for only three time points, there are already 2563, i.e., more than 16 million information
paths the system can describe:

time →
We may conclude from this crude illustration that it is system dynamics that determine systems dynamics

biological function. In bacterial systems it is known that the speed of transcription can
influence the folding, structure and thus to an extend also the function of proteins. Another
illustration that knowledge of components or symbols is not enough is the following set:

{h, t, u, r, t, e, h, t, l, l, e, t, t, b, u, o, d, n, i, f, i} .

Although not randomly arranged, looking at this list does not suffice to understand the
meaning. Ordering them further does appear to make sense:

{i, f, i, n, d, o, u, b, t, t, e, l, l, t, h, e, t, r, u, t, h} ,

but a real understanding comes only if we read the symbols with a particular speed from
left to right:

“If in doubt, tell the truth.” (Mark Twain)

Here again the temporal evolution is important: If we were given a letter a day, we would
usually not be able to make sense of we are told, nor would make a foreign language and
dialect make this easier. In line with the two quotations of Pauling and Poincare on page
2 we would argue that molecular and cell biology are built up from facts, as a cell is built
from molecules. But a collection of facts is no more a science than a soup of molecules is
a cell. Organisms and organs are complex structures of interdependent and subordinate
components whose relationships and properties are largely determined by their function
in the whole.



36 CHAPTER 2. MODELLING NATURAL SYSTEMS

2.6 Outlook

There are various approaches to arrive at a mathematical model of intra- and inter-cellular
dynamics. We are going to restrict ourselves to stochastic modelling and the use of dif-
ferential equations. For differential equations there are again various perspectives one can
take to motivate the set-up of the equations. To begin with, we are considering a reaction
network or pathway involving N molecular species Si. A network, which may include
reversible reactions, is decomposed into M unidirectional basic reaction channels Rµ

Rµ : lµ1Sp(µ1) + lµ2Sp(µ2) + · · ·+ lµLµSp(µLµ)
kµ−→ · · ·

where Lµ is the number of reactant species in channel Rµ, lµj is the stoichiometric coeffi-

cient of reactant species Sp(µj), Kµ =
∑Lµ

j=1 lµj denotes the molecularity of reaction channel
Rµ, and the index p(µj) selects those Si participating in Rµ. Assuming a constant tem-
perature and that diffusion in the cell is fast, such that we can assume a homogenously
distributed mixture in a fixed volume V and with a constant temperature and volume,
we consider law of mass action (LMA) models, consisting of N ordinary differential ratelaw of mass action

models equations

d

dt
[Si] =

M∑

µ=1

νµikµ

Lµ∏

j=1

[Sp(µj)]
lµj i = 1, 2, . . . , N (2.23)

where the kµ’s are rate constants and νµ denotes the change in molecules of Si resulting
from a single Rµ reaction. The LMA representation (2.23) is then an example of the
more general dynamic system model, without considerations for measurement noise or
randomness in the underlying process:

dxi(t)

dt
= φi

(
x1(t), . . . , xN (t), θ

)
, (2.24)

where xi denotes the n variables in question, θ denotes a parameter vector and φ is a
nonlinear function. The reader who is less accustomed to mathematical equations should
not worry, we are going to approach the general formulations (2.23) and (2.25) below, with
numerous examples of increasing complexity and generality.

LMA models have been widely used in modelling biochemical reactions and metabolic
engineering (e.g. [HS96, Fel97]). For modelling processes in living cells we are often not able
to provide a ‘physical derivation’ of the differential equations. Rather than representing
the physical interactions of molecules, understood as mass points in a gas or liquid, we
admit a phenomenological description. In this case and in order to match experimental
observations with a mathematical description we generalize the law of mass action. This
can be done in various ways and we are going to discuss some alternatives.

The mathematical representation (2.23) of a biochemical network does not account for
noise on the states, which would lead to stochastic ODEs. Neither does it consider mea-
surement noise, and we may call the model deterministic. It is however not deterministic
in the sense that it models molecules in a phase-momentum space and in fact it is rooted
in the stochastic setting of Boltzmann’s kinetic theory of gases and the [Si] are thus most
probable values. In a stochastic framework, we are looking at populations of molecules and
wish to determine for each molecular species Si the probability Prob{#Si(t)=ni} that at
time t there are ni molecules. For N molecular species, let n denote the N -dimensional
state-vector, whose values are positive integers, n ∈ ZN

+ . νµ ∈ ZN are the step-changes
occurring for elementary reaction indexed by µ. If S is a N -dimensional variable, we write
Prob{#S=n} = Pn(t). Describing the changes in random variable S, we consider the
following two state-transitions: First, from other states to state n, denoted

n− νµ
aµ(n−νµ)−−−−−−→ n ,
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where aµ(n − νµ) is the propensity , that is the probability per unit time, of a change νµ propensity

occurring, given that we are in state n− νµ. Secondly, moving away from state n is given
as

n
aµ(n)−−−→ n + νµ .

From these definitions we arrive at an expression referred to as master equation or chemical
master equation (CME) chemical master

equation (CME)

∂Pn(t)

∂t
=

M∑

µ=1

[
aµ(n− νµ)P(n−νµ)(t)− aµ(n)Pn(t)

]
. (2.25)

The first term on the right-hand side describes the change to state n, while the second
term describes the changes away from state n. M denotes the number of (unidirectional)
reaction channels. The product of the propensity with the probability should be read
as an “and”. The multiplication of a propensity and probability makes sense in light of
the derivative against time on the left, in that a propensity, multiplied with dt gives a
probability. Chapter 4 is going to provide a series of examples for stochastic processes for
which the methodologies become increasingly general until we arrive at (2.25).

A major difficulty with the CME is that that the dimension of these sets of equations
depends not only on the number of chemical species N but for any possible number
of molecules of any species we have n differential-difference equations. Gillespie [Gil76,
Gil77, Gil01, GB00] developed an algorithm to simulate or realize a CME model efficiently.
The Gillespie approach to stochastic simulation has in recent years become popular in
modelling intra-cellular dynamic processes [Kie02, RWA02, vGK01, MA97]. Some authors
have unfortunately confused the simulation of a stochastic model with a stochastic model.
While a formal analysis of (2.25) is very difficult, it is possible to approximate the CME
by a truncated Taylor expansion, leading to the Fokker-Planck equation, for which there
exist some results [ELS01, Gar85, vK92]. Comparing (2.23) and (2.25), we note that while
rate equations are deterministic in the sense that they employ differential equations, they
are based on a probabilistic description of molecular kinetics. On the other hand, the
CME is a stochastic formulation, but based on differential equations, with probabilities as
variables. Although we are going to look at various stochastic models and their derivation,
we eventually settle for model structures (2.24), to describe molecular principle from what
we can observe in experiments.

The motto of this book is nicely captured in the following quotation by Ludwig von
Bertalanffy, a founder of general systems theory and someone who laid the foundations
for systems biology in the 1960s:

“Considering the inconceivable complexity of processes even in a simple cell, it
is little short of a miracle that the simplest possible model – namely, a linear
equation between two variables – actually applies in quite a number of cases.

Thus even supposedly unadulterated facts of observation already are interfused
with all sorts of conceptual pictures, model concepts, theories or whatever
expression you choose. The choice is not whether to remain in the field of data
or to theorize; the choice is only between models that are more or less abstract,
generalized, near or more remote from direct observation, more or less suitable
to represent observed phenomena.

On the other hand, one should not take scientific models too seriously. Kroeber
(1952), the great American anthropologist, once made a learned study of ladies’
fashions. You know, sometimes skirts go down until they impede the lady in
walking; again, up they go to the other possible extreme. Quantitative analysis
revealed to Kroeber a secular trend as well as short-period fluctuations in the
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length of ladies’ skirts. This is a perfectly little law of nature. I believe a
certain amount of intellectual humility, lack of dogmatism, and good humor
may go a long way to facilitate otherwise embittered debates about scientific
theories and models.”

(From Bertalanffy’s book General Systems Theory ; the introductory part to
the chapter ‘Some Aspects of Systems Theory in Biology’ [Ber68].)

The previous section took us from a relational world view to a general systems ap-
proach. The present section introduced the formal systems we are dealing with hereafter.
The next section takes us on to the journey in which we apply the concept above to an
understanding of the processes that make up a living system. Enjoy!
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3 Biochemical Reactions

For anyone interested in modelling and simulation of biochemical reaction networks or
pathways, there are plenty of tools to choose from. These packages are roughly divided
into whether they deal primarily with deterministic or stochastic models. A question is
then to whether or when a model consisting of ordinary differential equations (ODEs) and
based on the Law of Mass Action (LMA), or a stochastic model is more appropriate. Here
we are discussing the close relationship between both ideas, in the context of biochemi-
cal reactions. We begin with simple, particular examples and increase the generality of
the equations before we arrive at the general chemical master equation (2.25) and have
available a set of more advanced mathematical tools to investigate the properties of such
stochastic representations.

3.1 The ODE Approach

We are now going to go through a short example of the modelling process. The aim is to
describe changes in a population of molecules. We first consider only one kind or species
of molecules, which we call S. As a conceptual framework in which we formulate our
models we initially consider Ludwig Boltzmann’s Kinetic Theory of Gases from 1877. It
begins with the assumption that for constant pressure, temperature, and volume V , the
number of collisions between any two molecules should be constant. Let #S

.
= n denote

the number of molecules of molecular species S. If the probability of a reaction to occur is
independent of the details of that collision, then the change ∆n in the number of molecules
is proportional to n as well as to a time interval ∆t:

∆n ∝ n ·∆t

There are several kinds of biochemical reactions, which in turn can be combined into
networks or pathways. We start with the simplest reaction which proceeds by itself,
involving only one molecular species. The empirical rule we described above can now be
turned into a mathematical equation

∆n = k · n ·∆t , (3.1)

where ∆t is assumed to be a relatively small interval of time. Dividing both sides by ∆t,

∆n

∆t
= k · n ,

we can now consider what happens as ∆t becomes infinitesimal small, ∆t → 0, leading
to the differential operator. For large n, changes in this very small time interval will be
very small compared to the overall changes in the population. We could thus turn from
discrete changes in the number of molecules n to continuous changes S(t) in the population
or concentration of S. This then leads us to the ordinary differential equation1 differential equation

dS(t)

dt
= k · S(t) , (3.2)

as a model of the simple monomolecular or autocatalytic reaction. A differential equation
describes the rate of change of variable S and is a translation of the observations and
assumptions we make in modelling a natural system. To simulate the system and to make
predictions for values of S(t) for a range of time points t, we need to find a solution to the
differential equation. For simple cases we may be able to find analytical solutions through
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mathematical analysis, while for more complex cases we need to resort to a numerical analytical vs. numerical
solutionssolution or simulation. The advantage of an analytical solution is that it is more general,

we usually do not need to know an exact value for the parameters, here k. For our simple
reaction the solution to the differential equation (3.2) is

S(t) = S(0) · ekt , (3.3)

where k is the rate constant by which the conversion of reactant A proceeds and S(t0) =rate constant

S(0) defines the initial condition. We frequently write S0 for S(0). The solution is thus
dependent on a parameter value for k and the initial conditions. Since we could get the
differential equation (3.2) from (3.3) by differentiating the equation, another way round
to a solution of the differential equations is by integration. A simulation of a system of
differential equation is therefore a numerical integration of (3.2). We are going to discuss
the process by which we take the limit ∆t → 0 and integrate the differential equation in
more detail further below in this section. Before that, we look at the application of our
model.
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Fig. 3.1: Simple exponential growth of a population, S(t) = S(0) · ekt. The dashed line is
for parameter k = 2.5sec−1 and the solid line for k = 2sec−1. The solution of the differential
equation dS(t)/dt = kS(t), depends on the initial condition (here S(0) = 0.2), that is,
for each initial condition there is a different solution. The fact that this curve growths
unbounded suggests that it is not a realistic growth model.

The model (3.2) describes an irreversible biochemical reaction, that is, the population
or concentration of S either increases or decreases as the result of changes to the molecules.
The reaction is also monomolecular since it involves only one kind of species. Whatever
happens to S, we could consider it to be a transformation of S1 into S2. In other words,
we have two species, the biochemical notation for this is

S1 → S2 ,

where the chemical species on the left are referred to as the substrate or reactant speciesreactant species

while those on the right are called product species. As above, for a small time interval ∆t,product species

the changes ∆S1, ∆S2 satisfy the proportionality relation

∆S1 ∝ −S1∆t ,

and if the number of molecules is conserved

∆S2 = −∆S1 .

1An ordinary differential equation, as opposed to a partial differential equation, does not consider
spatial distribution of components or diffusion.
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For ∆t→ 0 these relations turn into differential equations

d

dt
S1 = −kS1

d

dt
S2 = kS1 .

We are now at a point where we need to discuss the units of the elements of our model.
With regard to biochemical reactions, the rate of the reaction or reaction rate is, in this rate of the reaction

example, defined by the rate constant k multiplied with the concentration [S]. The molar
concentration [S] is given as mol per liter:

1
mol

L
≡ 1M

In general, in equations we denote the volume by V . Since a mole contains 6 · 1023

molecules, in order to get a count of the actual number of molecules #S we would have
to multiply the molar mass by the Avogadro number

NA = 6.02205 · 1023mol−1 .

With a slight abuse of terminology, we hereafter occasionally use S to denote a “count”
of molecules in moles. Also, if it is clear from the context and explicitly stated, we may
also use S to denote a concentration, leaving away the square brackets [S] to simplify the
notation. Since the derivative is only defined for continuous values, above we also slipped
in a change from the number of molecules to concentrations. We use square brackets [S] concentration, moles

to denote molar concentrations (M). For our example, the unit of d[S]/dt is M per second
and we have

[S] =
S

V
and #S = S ·NA .

Although here the rate constant k is measured as ‘per second’, denoted sec−1, in general
the units of the rate constant will depend on the type of the reaction and whether we are
dealing with concentrations or counts.

Many processes in nature are reversible and so the next step in making our approach to
modelling biochemical reactions more comprehensive, is to consider a reversible reaction reversible reaction

in which compound S1 is transformed into compound S2, and vice versa:

S1

k1−→←−−
k2

S2

where k1 is called the forward rate constant and k2 reverse rate constant. If the reversible
reaction is in an equilibrium, the average concentrations remain constant2 and the rates equilibrium

of changes are zero
d

dt
[S1] =

d

dt
[S2] = 0 ,

which is the same as to say
k1

k2
=

[S2]

[S1]
.

This relation is what C.M. Guldberg and P. Waage in 1864 described as the law of mass
action (LMA). The key to the differential equation model was the assumed proportionality law of mass action

in (3.1). From our initial discussion, the following set of differential equations serves as a
model for the reversible reaction above:

d

dt
[S1] = −k1[S1] + k2[S2] ,

d

dt
[S2] = k1[S1]− k2[S2] .

2Note that this does not mean nothing happens. There is still a flux of material, although the reactions
are balanced such that macroscopically we do not observe changes.
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If we consider the total concentration of S1 and S2 together as constant, [S1] + [S2] = ST

and substitute [S2] = ST − [S1] for [S2] in the equation for S1, we obtain

d[S1]

dt
= −(k1 + k2)[S1] + k2ST .

Simplifying the notation, let us denote S1
.
= x, α

.
= k1 + k2 and β

.
= k2ST so that the

differential equation looks tidier:
dx

dt
= β − αx . (3.4)

This model is then an example of the system considered in the previous chapter:

ẋ = φ(x, θ) ,

where θ = (α, β). This is a basic differential equation, for which there are various ways to
solve it. Here we simply state the result in order to compare it with (3.3) as a model for
population growth:

x(t) =
β

α
+

(

x(0)− β

α

)

e−αt .

Figure 3.2, shows simulation results for two different initial conditions. We observe that
although the growth depends heavily on the initial conditions, the growth is limited to
β/α.
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Fig. 3.2: Numerical solution for the differential equation (3.4), which was derived as a model
for a reversible reaction. The solid line is for x(0) = 0, while the dashed line is for x(0) = 2
M. α = 2sec−1, β = 3 M/sec.

3.1.1 Differential vs. Difference Equations

A justified criticism of the ODE model (3.2), as a representation of a biochemical reaction
could be that we did not aim for physical realism, modelling the collisions of molecules.
Instead we modelled what we observed: that at any time the change is proportional to
∆t and the current number of molecules. A reasonable interpretation of (3.2) is then that
S(t) represents the average population level at time t. In this case we can view k as the
difference between the formation rate k+ of S and the decay rate k− such that

dS(t)

dt
= (k+ − k−)S(t) with solution S(t) = S(0) · e(k+−k−)t . (3.5)

In the derivation of the differential equation we made another assumption of a large pop-
ulation #S

.
= n such that discrete changes to the population are small enough to assume
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overall changes to the population are continuous (see Figure 3.3 for an illustration). This
assumption in effect describes a discrete process with a continuous model. We can discuss
this mathematically by approximating a difference equation by a differential equation. A
simple intuitive example for this is the interest we receive for savings in a bank account.
Say a bank offers on savings a rate of return r, in percent, compounded annually. If S(0) is
the initial saving put in the bank, and S(t) its future value after t years, then the following
difference equation models the growth of our money: difference equation

S(t + 1) = (1 + r)S(t) ,

with initial condition S(t0) = S(0). If we are interested in growth on a monthly basis,

S

(

t +
1

12

)

=
(

1 +
r

12

)

S(t) .

Here r is divided by 12 because it is by definition compounded annually (not monthly).
In general, if a year is divided into m equal intervals, the difference equation becomes

S

(

t +
1

m

)

=
(

1 +
r

m

)

S(t) ,

which can be written more conveniently

S
(
t + 1

m

)
− S(t)

1
m

= rS(t) .

As m goes to infinity, denoted m→∞, the above difference equation becomes a differential
equation

dS(t)

dt
= rS(t) , (3.6)

where t is now a continuous time variable. One reason for choosing a continuous time
representation with continuous changes is the rich set of analytical tools that is available
to investigate the properties of such equations.
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Fig. 3.3: Approximation of discrete steps as continuous changes. For large numbers of
molecules changes to the population appear smooth and may be represented by a continuous
model.

3.1.2 Numerical Simulation

Here we look at another assumption made in our model (3.2), that of a small interval of
time ∆t. This question is closely related to finding solutions to differential equations. For
simple linear ordinary differential equations like the one above we can find can find exact
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or analytical solutions. For more complicated cases, in particular nonlinear equations,
which we consider later, we can use numerical integration to obtain an approximation.
The simplest approach to obtain a numerical solution of a general ordinary differential is
called the forward Euler method : Euler method

dS

dt
≈ ∆S

∆t
=

S(t + ∆t)− S(t)

∆t
, (3.7)

where ∆S and ∆t are small, but not infinitesimal. If this approximation to the derivative
is substituted into (3.5) and the equation is rearranged we get

S(t + ∆t)− S(t)

∆t
≈ k+S(t)− k−S(t)

S(t + ∆t) = S(t) + S(t)(k+ − k−)∆t .

The justification for the differential d/dt may be considered a mathematical explanation.
A physical argument is that in order to avoid surface effects, influencing the interactions
among molecules, we consider an infinitely large system lim V → ∞. To avoid that the
concentration goes to zero, the number of molecules must become very large in order to
move from a discrete sum to a continuous integral.

3.2 Biochemical Reaction Modelling

Following the above introduction to differential equation modelling, the present section is
to provide a more comprehensive survey of biochemical reaction modelling. The theoret-
ical and experimental description of chemical reactions is related to the field of chemical
kinetics. A primary objective in this area is to determine the rate of a chemical reaction,
i.e., describing the velocity of conversion of reactants to products. Another task is the
investigation of the influence of external factors, like temperature, pressure, and other
chemical species on the chemical reaction under consideration. The determination of the
reaction mechanism, the way the products are formed, which intermediates are created, is
a further field of chemical kinetics.

3.3 Fundamental quantities and definitions

The pivotal quantity in the description of chemical reactions is the reaction rate. The
general chemical reaction

|l1|S1 + |l2|S2 + . . . + |li|Si → |li+1|Si+1 + |li+2|Si+2 + . . . (3.8)

can be summarized by

0 =
∑

i

liSi ,

where li denotes the stoichiometric coefficient for the i-th component of the chemicalstoichiometric
coefficient reaction defined in (3.8). The reaction rate of this reaction is defined as

reaction rate

r(t) =
1

li

d#Si(t)

dt
, (3.9)

where #Si is the number of molecules of species Si in the considered volume. The sto-
ichiometric coefficients li are negative for reactants and positive for products. From the
definition (3.9) it follows that the reaction rate is a positive definite quantity identical for
all participating species Si.
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In wet-lab experiments and in modelling reactions in a cell we usually assume a constant
volume, although in the cell this is surely not always a realistic assumption. For a system
with constant volume we can transform (3.9) into an equation for the concentration [Si]
of species Si

r(t) =
1

li

1

V

d#Si(t)

dt
=

1

li

d#Si/V

dt
=

1

li

d[Si](t)

dt
. (3.10)

In general one can use any quantity which is proportional to the number of molecules, for
instance the particle density or the partial pressure of gases but for practical considerations
the measurement of concentrations is often easier than the count of molecules. But there
is a more important differences between these quantities. The particle number and the
extent variable are extensive properties, i.e., depending on the size of the system. The
concentration, particle density, . . . are intensive quantities independent from the particular
system under consideration. We hereafter assume a system with constant volume, in which
case we get for (3.8) a reaction rate

v(t) = − 1

|l1|
dS1(t)

dt
= − 1

|l2|
dS2(t)

dt
= . . . = − 1

|li|
dSi(t)

dt

=
1

|li+1|
dSi+1(t)

dt
=

1

|li+2|
dSi+2(t)

dt
= . . . , (3.11)

where Si(t) represents either a particle number or a proportional quantity. Degrading
species are characterized by a minus sign while an increase is indicated by a plus sign.
According to (3.11) the reaction rate is proportional to the change of concentration. An-
other possibility to investigate the reaction rate is given by the advancement or extent of
an reaction ε(t). This quantity is a measure of the progress of the chemical reaction under
consideration. It is defined as

ε(t) =







1
li

(Si(t)− Si(0)) for reactants ,

1
li

(Si(0)− Si(t)) for products .
(3.12)

The extent ε(t) relates the initial conditions Si(0) to the time dependent variables Si(t)
and has the same value for all species. We are using it for the analytical integration of
time laws of higher orders later in the text. With the extent the reaction rate is

v(t) =
dε(t)

dt
=

1

li

dSi(t)

dt
(3.13)

and is interpreted as rate of change of the advancement of a reaction.

It is possible to formulate a conservation law which relates the reactants and the
products in a closed system:

S0 = S1(t) + S2(t) , (3.14)

where S0 is the initial concentration of the reactant S1, where S1(t), S2(t) are time depen-
dent concentrations. Here, we assume that the initial concentration of the product S2 is
zero. Relation (3.14) describes the conservation of the number of atoms in a closed system closed system

under the influence of the chemical process. One distinguishes between three types of
systems according to their possibilities to exchange energy and matter with the environ-
ment. The most restricted system is an isolated or fully closed system, where no transfer
of energy and matter is possible. If we allow the exchange of energy, but no exchange of
matter, the system is called closed. Such a system is often used for chemical and biochem-
ical experiments. In an open system also a transfer of matter is possible. Examples are closed/open system

flow reactors in the chemical industry and of course the cell in its natural environment.
The creation and the disappearance of atoms is not a chemical process. Since the concen-
tration is a function of the molecule number, we obtain a conservation of concentrations.
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Often, this law is also called mass conservation. From a physicist’s perspective this is conservation law

wrong. The mass is not a conserved quantity in chemical systems. As mentioned above,
we can use any quantity proportional to the particle number. For each of them one can
formulate a specific conservation law of the form (3.14). To avoid a restriction of systems
in our treatment we will simply call it conservation law for this reason.

The advantage of conservation laws is, that they simplify the description of the system
of interest and give conditions to narrow relevant solutions down. The simplification arises
from the fact, that each conservation law eliminates a variable and reduces the order of a
system of coupled differential equations. Further famous examples of conservation laws are
energy conservation, momentum conservation and the angular momentum conservation.

3.4 Basic Principles and Assumptions

In the previous section we defined the reaction rate as a differential equation that depends
on the change of participating species over time. In order to obtain the temporal behavior
of molecular species, we have to specify the functional relation of change. The class of
differential equations is not automatically restricted to ordinary differential equations. In
ODEs the rate of change is described by a continuous function. The chemical conversion is
however not a continuous process as it is postulated for the use of functions. If one wishes
to consider the discreteness of the process without a change of the general framework,
this is possible but requires the introduction of what are called the Dirac-δ-function and
the Heaviside step-function θ. In a strict mathematical sense these are not functions but
distributions and hence the differential equations are strictly speaking no longer ‘ordinary’
differential equations. The fact that it is possible to describe discrete changes in reactions
with differential equations is worth mentioning. We are going to return to this question
when we introduce stochastic models. In the literature stochastic models are frequently
justified by stating that differential equations are not able to capture discrete changes.
A formal theoretical description of discrete changes in reactions in terms of distributions
is possible although non-trivial. One has to know the time of each reaction within the
considered system. But since a prediction of the exact time is not possible, only statistical
properties are known for chemical reactions. In particular the probability of a reaction
can be calculated. Stochastic simulations work in this way. The simulations calculate the
time of a reaction from probability distribution functions. The result of a simulation run
is one possible realization of the temporal evolution of systems and corresponds to the
formal treatment described above. The calculation of probabilities of a reaction requires
a detailed information about the process of a chemical reaction. Collision theory is a
successful approach to justify experimental rate laws. Two particle can only react if they
interact which each other. In a classical view both particles must collide, like two balls on
the billiard table.

The description of a molecule as a hard sphere is motivated by the subsequently feasible
assumption of an interaction with a short contact time between the molecules. This means
the interaction range is much smaller than the average distance between molecules. It is
then possible to assume collisions as independent, an assumption useful in the context of
stochastic Markov models. Because of the finite interaction range we also have a finite
interaction time. This is the time, a molecule needs to move through the potential of
its collision partner. Within this time old bonds break and new ones are established.
Analogues to our assumption on the interaction length the interaction time is small and
negligible in comparison to the time between two collisions. It follows from this that the
number of reactions per time is related to the number of collisions within the considered
time interval. Statistical physics is one possible tool for the solution of this problem. The
main assumption made in statistical physics is, that the properties of the investigated
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system are well described by the ‘expected value’ or mean value. Therefore, all results
obtained in due course have to be interpreted as averages. There are fluctuations around
the expected value, but these are assumed small in comparison to the average. Because
of the use of averages we change from a discrete description to a continuous formulation.
Furthermore we assume an ideal gas in thermodynamic equilibrium. Then, the velocity
of the molecules is given by the Maxwell-Boltzmann distribution function. In order to
avoid surface effects3 one assumes an infinitely expanded system. Because of the infinite
system volume V one has to increase the particle number #S to infinity to keep the right
particle density. All further treatments are in this thermodynamic limit, requiring that
in the limit of V, #S → ∞ the ratio #S/V is constant and finite. Last but not least we
have to make an assumption each chemical reaction is independent from the others. In
addition to these assumptions we also restrict our treatment to a special class of systems
called isothermal and isochore reaction systems. This means that during the reaction no
temperature changes and no volume changes occur.

What follows is a short summary of chemical kinetics. From collision theory the
reaction rate is equal to the number of molecules participating in the chemical reaction
and the rate coefficient k. The rate coefficient4 k summarizes details of the reaction and is rate coefficient

only fully known for very simple systems. This requires information about particle motion
and is therefore temperature dependent. Furthermore, not all collisions lead to a chemical
reaction. The collision energy can be too small to initiate the reaction. The molecules
have a false direction, for instance, the molecules do not hit their reactive sites and cannot
react. The molecules are too fast, it is not enough time to break the old and establish
the new chemical bindings. These are only few of the possible reasons for a non-reactive
collision. In summary, the theoretical calculation of the rate coefficient is complicated.
For this reason we have to resort to experimental or estimated values. If identical species
react, the rate coefficient also contains a symmetry factor avoiding a double counting5.

A further common assumption for pathway modelling is, that we can decompose more
complicated chemical reactions into a sequence of elementary reactions, which we can de-
scribe using chemicals kinetics. The most common classification is to distinguish the reac-
tion by the number of participating molecules. The simplest reaction is the monomolecular
reaction with only one molecule. In a bimolecular reaction two molecules or substrates
form a product. This is the most frequently occurring reaction in nature. Trimolecular
reactions are rare, because the probability for a collision of three particle within a tiny
time interval is rather small. We will deal with these elementary reactions and more
complicated reactions in the following sections.

3.5 Elementary Reactions

We assume that chemical reactions can be decomposed into a sequence of elementary
steps, the elementary reactions. For simple reactions it is possible to derive time laws. In
this section we will discuss the properties of the different elementary reactions in greater
detail, finding solutions to differential equations.

3The presence of a reactive surface can dramatically change the properties of a (bio)chemical system.
The catalyst of cars works in this way.

4Often k is called rate constant because of its time independence. But k is dependent on system
parameters like the temperature or the pH-value and hence the term ‘coefficient’.

5For instance, for a reaction of two identical molecule one have to introduce a symmetry factor 1/2
otherwise one counts each collision twice.
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3.5.1 Monomolecular reactions

The monomolecular reaction
S1

k→ S2 (3.15)

is the simplest elementary reaction. It converts species S1 to S2. The variable k above
the arrow is the corresponding rate coefficient. For the monomolecular reaction the rate
coefficient has the unit time−1, independent from the units used for the species. The
quantity k dt is the probability that a reaction occurs within the time interval dt. According
to the common chemical kinetics the reaction rate is

r(t) = −dS1(t)

dt
= k S1(t) (3.16)

which can integrated by separation of variables

dS1(t)

S1(t)
= −k dt . (3.17)

The integration within the limits S1(0) to S1(t) and from 0 and t in the time domain

S1(t)∫

S1(0)

dS1(t)

S1(t)
= −k

t∫

0

dt (3.18)

leads to

ln
S1(t)

S1(0)
= −kt . (3.19)

Solving this for S1(t) we obtain the familiar exponential law

S1(t) = S1(0) exp{−kt} , (3.20)

for the temporal evolution of S1. S1(0) is the initial condition at t = 0. The solution for
the product S2 is obtained from the conservation law

S2(t) = S1(0)− S1(t) + S2(0) (3.21)

as
S2(t) = S1(0) [1− exp{−kt}] + S2(0) , (3.22)

with the initial value S2(0).

Characteristic times

The ty-time is the time where the normalized quantity S1(t)/S1(0) has the value y. Hence,
possible values for y lie in the interval [0, 1]. From (3.20), it follows that

ty = − ln y

k
. (3.23)

The most commonly known ty-time is the half life t1/2. At this time point half of thehalf life

initial amount S1(0) is transformed into product S2. It follows from the general definition
(3.23)

t1/2 =
ln 2

k
≈ 0.69

k
, (3.24)

which is independent from S1. This means that it takes always t1/2 to halve the amount
of S1. This is illustrated in Figure 3.4, where S1(t), normalized by S1(0), is drawn as
function of the half life t1/2. At every multiple n of t1/2 the ratio S1(t)/S1(0) has the value
1/2n as mentioned before.
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Fig. 3.4: The monomolecular reaction (3.15) as function of the half life t1/2. The normalized
concentration S1(t)/S1(0) has the value 2−n at the n-th multiple of the half life.

Measurement of the rate coefficient

In case of a monomolecular reaction the rate coefficient can be measured in a simple way.
From (3.19) the equation

ln S1(t) = ln S1(0)− k t (3.25)

defines a straight line with slope −k and an intersection with the y-axes ln S1(0). If one
applies the logarithm of measured data, as function of time, then the rate coefficient k is
obtained from a linear fit. This is sketched in Figure 3.5.
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Fig. 3.5: The measurement of the rate coefficient k for a monomolecular reaction. The
logarithm of the concentration S1 as function of time t is a straight line with slope −k. The
initial concentration S1(0) is given by the intersection with the y-axis. The parameters are
obtained by a linear fit to measured data.

3.5.2 Bimolecular Reactions

Probably the most common reaction that occurs in cells is the bimolecular reaction. There
are two different ways by which two reactants combine to form one or more products. In
the reaction

S1 + S2
k→ products
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two different species are transformed into products, but the reaction

2S1
k→ products

is also possible. We will discuss both types of bimolecular reactions in the following two
sections.

Bimolecular reactions of two different molecules

The bimolecular reaction of two different molecular species S1 and S2 is defined by

S1 + S2
k→ products , (3.26)

where k is the rate coefficient for the bimolecular reaction. Its unit is now dependent on
the units of S1 and S2. If S1 and S2 are concentrations, the rate coefficient has the unit
concentration per time. From collision theory we have for the reaction rate

r(t) = −dS1(t)

dt
= −dS2(t)

dt
= −k S1(t) S2(t) . (3.27)

With the help of the extent variable ε(t) we can transform this equation to

r(t) =
dε(t)

dt
= k [S1(0)− ε(t)]

[
S2(0)− ε(t)

]
, (3.28)

with initial concentrations S1(0) and S2(0). The differential equation is now solvable by
separation of variables. The analytical solution of the integral

kt =

ε(t)∫

0

dε(t)
[
S1(0)− ε(t)

][
S2(0)− ε(t)

] (3.29)

is obtained, if one uses the following expansion into partial fractions

1
[
S1(0)− ε(t)

][
S2(0)− ε(t)

] =
1

S1(0)− S2(0)

[
1

S2(0)− ε(t)
− 1

S1(0)− ε(t)

]

.

The result

kt =
1

S1(0)− S2(0)
ln

S2(0)

S1(0)

S1(0)− ε(t)

S2(0)− ε(t)

=
1

S1(0)− S2(0)
ln

S2(0)

S1(0)

S1(t)

S2(t)
(3.30)

is transposable to S1(t) and S2(t) using the relation ε = S1(0) − S1(t) = S2(0) − S2(t).
One obtains

S1(t) =
S2(0)− S1(0)

S2(0)/S1(0) exp{[S2(0)− S1(0)]kt} − 1
(3.31)

and

S2(t) =
S1(0)− S2(0)

S1(0)/S2(0) exp{[S1(0)− S2(0)]kt} − 1
(3.32)

as the time law for bimolecular reaction (3.26). The reactants decrease exponentially.
The component abounding at the beginning is left over at the end of the reaction. If
one plots the logarithmic term in (3.30) versus the reaction time t, one obtain a straight
line with slope −k (S1(0)−S2(0)) allowing the measurement of the rate coefficient k from
experiment and a linear regression.
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The equations (3.31) and (3.32) can be simplified in the case of stoichiometric concen-
trations S1(0) = S2(0). Under this conditions the relation S1(t) = S2(t) holds at every
time. The reaction rate (3.27) can rewritten as

r = −dS1(t)

dt
= −dS2(t)

dt
= k [S1(t)]

2 = k [S2(t)]
2 , (3.33)

which is again solvable by separation of variables. In this special case the time law is

S1(t) =
S1(0)

S1(0)kt + 1
=

S2(0)

S2(0)kt + 1
= S2(t) . (3.34)

If one of the reacting species is in great excess, for instance S2(0) � S1(0), the time law
can further simplified. The extent is controlled by the second component S1. For the
abounding species S2 holds

S2(t) = S2(0)− ε(t) ≈ S2(0) (3.35)

while (3.12) is valid for S1(t). With these approximations we obtain the differential equa-
tion

r(t) = −dS1(t)

dt
= k S1(t) S2(t) ≈ k S1(t) S2(0)

≈ k′ S1(t) , (3.36)

where the new effective coefficient k′ is the product of the original rate coefficient k and
the concentration S2(0). It follows, that for this case the time law can be reduced to
the monomolecular case treated in the previous section. Such reactions are referred to as
pseudo-monomolecular or kryptobimolecular.

3.5.3 Bimolecular reaction of identical species

If both reactants are from the same species

2S1
k→ products , (3.37)

we have a bimolecular reaction for two identical molecules. We write

r(t) = −1

2

dS1(t)

dt
= −k [S1(t)]

2

2
(3.38)

for the reaction rate. The prefactor 1/2 ensures that one gets the same rate for the
reactants and products. If one uses the change of concentration, this condition is, in
general, not fulfilled.

The differential equation can be solved by separation of variables. For the dynamic
concentration S1(t) one obtains

S1(t) =
S1(0)

2S1(0)kt + 1
, (3.39)

which is similar to (3.34). Both equations differ in a factor two in the denominator.
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3.5.4 Trimolecular reactions

The reaction of three molecules to products is rare because the probability that three
independent molecules collide at the same time or within a small time interval is very
small. There are three possible ways for such a reaction. The first one is the reaction of
three species

S1 + S2 + S3
k→ products

form the products. In the second possibility

2S1 + S2
k→ products

two molecules of species S1 react with a third particle S2. Last but not least, three identical
particals

3S1
k→ products

can be transformed into the products.

Trimolecular reactions of different species

For the trimolecular reaction

S1 + S2 + S3
k→ products (3.40)

of three different species the reaction rate is

r(t) = −dS1(t)

dt
= −dS2(t)

dt
= −dS3(t)

dt
= k S1(t) S2(t) S3(t) . (3.41)

If one introduces the extent variable ε into the last equation

r(t) =
dε(t)

dt
= k

[
S1(0)− ε(t)

][
S2(0)− ε(t)

][
S3(0)− ε(t)

]
, (3.42)

with initial concentrations S1(0), S2(0) and S3(0), it is possible to solve the differential
equation by separation of variables. One obtains

kt =
1

[
S1(0)− S2(0)

][
S3(0)− S1(0)

] ln
S1(t)

S1(0)

+
1

[
S1(0)− S2(0)

][
S2(0)− S3(0)

] ln
S2(t)

S2(0)
(3.43)

+
1

[
S2(0)− S3(0)

][
S3(0)− S1(0)

] ln
S3(t)

S3(0)
.

If all participating species have stoichiometric concentrations6 we can simplify the ap-
proach (‘ansatz’). Another known example is the so called ‘product ansatz’, where we
assume that the solution of two parameter-dependent problem is separable into a product
of two terms depending on one parameter only. In contrast, collision theory is an approach
to the description of the temporal change of reacting species. For the reaction rate (3.41)
with the relation S1(t) = S2(t) = S3(t) holding for all time. The resulting differential
equation

r(t) = −dS1(t)

dt
= k [S1(t)]

3 (3.44)

6The ratio of concentrations is equal to the ratio of stoichiometric coefficients.
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is easy to solve and one obtains for the the concentrations

S1(t) =

√

S1(0)2

1 + 2S1(0)2kt
(3.45)

as function of time. The results for S2(t) and S3(t) follow, if we exchange S1 for S2 and
S3 in the same way.

Trimolecular reactions of two different species

The trimolecular reaction
2S1 + S2

k→ products (3.46)

describes the reaction of two molecules of species S1 with one particle of species S2 into
products. For the reaction rate

r(t) = −1

2

dS1(t)

dt
= −dS2(t)

dt
= k [S1(t)]

2 S2(t) . (3.47)

Again, one substitutes the time dependent variables S1(t) and S2(t) by the corresponding
relation between the initial values and the extent ε(t). The resulting differential equation

r(t) =
dε(t)

dt
= k

[
S1(0)− ε(t)

]2 [
S2(0)− ε(t)

]
(3.48)

can be solved by separation of variables. The result

kt =
1

2S2(0)− S1(0)

[
S1(0)− S1(t)

S1(0)S1(t)
+

1

2S2(0)− S1(0)

]

(3.49)

can be simplified, if one assumes stoichiometric concentrations. Then the relation S1(t) =
2S2(t) has to be satisfied for all time. The differential equation is now

r(t) = −1

2

dS1(t)

dt
=

k [S1(t)]
3

2
. (3.50)

Thus, the temporal evolution of the concentration of species S1 obeys the same time law
(3.45) as the species in the trimolecular reaction of three different particle for stoichiometric
conditions. With the aim of the above relation between S1 and S2 one obtains

S2(t) =
1

2

√

S2(0)2

1 + S2(0)2kt/2
(3.51)

for the second species S2.

Trimolecular reactions of three identical molecules

The reaction of three molecules of the same species

3S1
k→ products, (3.52)

is the third possibility for a realization of a trimolecular reaction. The reaction rate is
given as

r(t) = −1

3

dS1(t)

dt
= k [S1(t)]

3 . (3.53)

It follows

S1(t) =

√

S1(0)2

1 + 6S1(0)2kt
(3.54)

for the concentration of species S1 as a function of time.
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3.5.5 Higher and rational reaction orders

Up to now, we treated elementary reactions with one, two or three participating molecular
species. The developed formalism shall expand to non-elementary reactions. For this
purpose we revert to the general chemical reaction

|l1|S1 + |l2|S2 + + . . . + |li|Si → |li+1|Si+1 + |li+2|Si+2 + . . . (3.55)

and introduce the reaction rate as

r(t) = k [S1(t)]
n1 [S2(t)]

n2 . . . [Si(t)]
ni [Si+1(t)]

ni+1 [Si+2(t)]
ni+2 . . .

= k
∏

i

[Si(t)]
ni . (3.56)

The total reaction order then is defined as sum over partial orders

n =
∑

i

ni , (3.57)

which can take values greater than three, as well as rational values. Therefore, the so
described reaction is in general not an elementary reaction. The partial reaction order ni of
each species, in general, do not coincide with the stoichiometric coefficients. The reaction
rate obtained is an approximation and does not reflect the true reaction mechanism, but
often it gives a first indication to the mechanism.

If one assumes stoichiometric concentrations, one is able to obtain some important
quantities. The reaction rate is then

1

l1

dS1(t)

dt
=

1

l2

dS2(t)

dt
= . . . =

dε(t)

dt
= k

[
S1(0)− ε(t)

]n
, (3.58)

where ε(t) is the extent variable. By separation of variables one obtains

S1(t)

S1(0)
=

(
1

1 + S1(0)n−1 (n− 1) kt

)1/(n−1)

, (3.59)

for the normalized or dimensionless concentration S1(t)/S1(0). The half life, defined as
the time, where the normalized concentration is S1(t)/S1(0) = 1/2, can be determined
from (3.59). After some algebraic transformations one obtains

t1/2 =
2n−1 − 1

(n− 1)k
S1(0)

−n+1 . (3.60)

The dependence from the initial concentration S1(0) in (3.60) allows the determination of
the total reaction order n. In an experiment the half life can be measured as function of
the initial concentration. A double logarithmic representation of the data gives a straight
line with a slope m = −n + 1, which can be used to determine the total reaction order
n. For such practical considerations and experimental techniques the reader is referred to
[AdP02, Seg93, CB95].

Reactions of zeroth order

A special case of the generalized reaction is the reaction of “zeroth order”. For such a
reaction the reaction rate is independent from the concentration. Choosing a zeroth order
degradation of species S1 as an example, the differential equation

−dS1(t)

dt
= k (3.61)
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reaction order half life t1/2

1 t1/2 = const.

2 t1/2 ∼ S1(0)
−1

3 t1/2 ∼ S1(0)
−2

1/2 t1/2 ∼
√

S1(0)

3/2 t1/2 ∼ 1/
√

S1(0)

Table 3.1: The dependency of the half life t1/2 from the initial concentration for the general
chemical reaction (3.55) with stoichiometric conditions. S1(0) is the initial concentration of
reactant S1.

is easy to integrate. The result is the linear function

S1(t) = S1(0)− kt , (3.62)

where the slope is given by the rate coefficient k. Reactions of zeroth order appear,
if the rate is governed by a temporal constant non-chemical process. Examples include
reactions on a surface, where the concentration of the reactant is constant by adsorption or
a constant external flow of matter. The saturation of the enzyme complex in the enzyme
kinetic reaction is a further example for such a behaviour. Often, this approximation is
used to simplify kinetic equations. The transient time, the reaction takes to reach this
state and at the end of the reaction, is assumed as small compared to the saturated state.

At the end of this section we have to made an important comment on this treatment of
(bio)chemical reactions. Within this framework one describes the dependency between the
reactants and the products without a proper model of the reaction mechanism. Hence, the
total order n cannot be interpreted as number of participating molecules in an elementary
reaction. But it is an easy and fast way to find a functional relation between the reactants
and the products.

3.6 Complex Reactions

In the previous section we introduced the concept of elementary reactions and demon-
strated their properties. As mentioned before, we assume that chemical reactions consist
of a set of elementary reactions. In the following section we want to classify some basic
complex reactions and describe their properties. Before we go into details, there are three
basic kinds of complex reaction:

1. reversible reactions,

S1 � S2 ,

2. parallel reactions,

S1

↗
→
↘

S2

S3

S4

3. consecutive reactions,

S1 → S2 → S3 .

More complex reactions can be composed of these three basic classes. Some possible
reaction schemes are:
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• Consecutive reactions with reversible parts

– pre-equilibrium

S1 � S2 � S3 → S4

– downstream equilibrium

S1 → S2 � S3

• Consecutive reactions combined with parallel reactions

S1 → S2

↗
→
↘

S3

S4

S5 → S6

• Competitive consecutive reactions

S1 + S2 → S3 + S4

S1 + S3 → S5 + S6

• Closed consecutive reactions (chain reactions)

S1 → 2X

S1 + X → S2 → S3 + X

We can continue this list with more complicated complex reactions, but in order to convey
an idea of the complexity of reaction mechanism this short overview is sufficient.

Each step in a complex reaction scheme is represented by an elementary reaction,
which can be described by a differential equation. Because steps are not independent of
each other, we now obtain a system of coupled differential equations. In general, there
is no analytical solution for such systems. One has to use numerical methods to solve,
simulate, the differential equations. In these notes we use some analytical solvable simple
examples to demonstrate the properties of complex reactions.

3.6.1 Reversible Reactions

A reversible reaction consists of two elementary reactions, the forward reaction and the
reverse reaction. Both are characterized by rate coefficients. The simplest example for
such a reaction is the monomolecular reversible reaction

S1
k1−−−→←−−−
k−1

S2 , (3.63)

where the forward and the backward reaction are first-order reactions. The rate coefficient
of the forward reaction is k1 and the coefficient of the backward reaction is k−1. If we
assume the initial concentration S1(0)

.
= S0 and S2(0) = 0 the conservation law

S1(t) + S2(t) = S1(0) (3.64)

must hold for all times. The corresponding reaction rate is obtained from the difference

r(t) = r1(t)− r−1(t) (3.65)
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of the forward and the backward reaction. With the use of the representation of elementary
reactions we obtain the differential equations

r = −dS1(t)

dt
= k1 S1(t)− k−1 S2(t)

=
dS2(t)

dt
= k1 S1(t)− k−1 S2(t) = −dS1(t)

dt
(3.66)

=
dε(t)

dt
= k1

[
S1(0)− ε(t)

]
− k−1

[
S2(0)− ε(t)

]

for the reaction rate. The first term on the ride-hand-side corresponds to the production
of S2 in a monomolecular reaction from S1 and the second term to the analogue reverse
reaction. From (3.66) it follows, that there is a point, where the reaction rate is zero. The
forward and the backward reaction are balanced at this point, the same amount of S2 is
produced the same amount of S2 as is transformed back to S1. From this we see that a
reaction rate of zero does not mean, that nothing happens7. A net change of concentration
is not measurable from a macroscopic point of view, but in a microscopic view the reactions
are still going on. This special state is called chemical equilibrium. For our example of a chemical equilibrium

reversible reaction, this state is defined as

0 = k1S1(t)− k−1S2(t) . (3.67)

More general, the right-hand-side must be zero. This mathematical condition is a necessary
but not a sufficient constraint, especially for complex systems. It has to fulfill some more
physical conditions, by which we decide if it is a stable or an unstable state. Only the
stable state is referred to as equilibrium state. The solution of equation (3.67) is

Keq =
k1

k−1
=

S2,eq

S1,eq
(3.68)

defines the equilibrium constant Keq as the ratio of the rate coefficient of the forward and
the rate coefficient of the backward reaction. This quantity measure the affinity of S1 to
transform to S2. The equation (3.68) is the famous law of mass action for an unimolecular
reaction. Equations (3.66) are kinetic rate equations. The law of mass action is a result
of these equations and the assumptions behind them. To call this representations ‘law
of mass action’ can therefore be misleading. The term ‘generalized law of mass action’
is sometimes used. For S2 we define the dissociation constant Kd describing the process
of the backward transformation into the reactants. It is the inverse of the equilibrium
constant Keq. From (3.68) it follows that in equilibrium the ratio of the concentrations
match the equilibrium constant. The corresponding concentrations are called equilibrium
concentrations S1,eq and S2,eq. The species with a higher production rate has the higher
equilibrium concentration.

The temporal evolution of the reversible reaction (3.63) can be solved analytically
using the third differential equation in (3.66). The integration over the extent variable
ε(t) can be carried out by separation of variables. We obtain the integrals

ε(t)∫

0

dε(t)

[

(Keq + 1)

(
KeqS1(0)− S2(0)

Keq + 1
− ε

)]−1

=

t∫

0

k−1 dt . (3.69)

After integration and some manipulations we get the result

ε(t) =
k1S1(0)− k−1S2(0)

k1 + k−1

[

1− exp
{
− (k1 + k−1)t

}]

(3.70)

= εeq

[

1− exp
{
− (k1 + k−1)t

}]

7Except at time t = 0, where the reaction was started. At this point, we postulate that nothing
happened before.
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for the extent variable. The extent increases exponentially to its equilibrium value. The re-
laxation time τ = (k1+k−1)

−1 is a measure how fast the reaction tends to the equilibrium.
The time evolution for the reactant S1 follows as

S1(t) = S1,eq + (S1(0)− S1,eq) exp {−(k1 + k−1)t} , (3.71)

with initial concentration S1(0) and equilibrium concentration S1,eq. From the conserva-
tion law

S1(t) + S2(t) = S1(0) ,

where we assume that S2(0) = 0, we obtain

S2(t) = (S1(0)− S1,eq)
[

1− exp
{
− (k1 + k−1)t

}]

(3.72)

for the product. Both, reactant and products, reach their equilibrium concentration,
exponentially. This behavior is shown in Figure 3.6. Additionally, the equilibrium values
are drawn as horizontal lines for comparison. We choose k1 > k−1 for this example, hence
the equilibrium state of S2 is higher than the equilibrium state of the reactant S1.
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Fig. 3.6: The monomolecular reversible reaction as function of the relaxation time τ . The
solid line represent the dynamic change of the reactant and the dashed line the change of the
product to their equilibrium states shown as horizontal lines. The ratio of the equilibrium
states is given by the law of mass action (3.68).

The rate coefficients of a monomolecular reversible reaction can be determined from
a logarithmic representation of (S1(0) − S1,eq)/(S1(t) − S1,eq) and the equilibrium with
(3.68). The slope of the logarithmic plot is proportional to the inverse relaxation time
(k1+k−1). The determination of the rate coefficients k1 and k−1 requires the measurement
of the dynamic change of concentrations and the measurement of equilibrium data.

The treatment of reversible reactions can be generalized to higher reaction orders. As
an example we choose a bimolecular forward- and backward reaction

S1 + S2
k2−−−→←−−−
k−2

S3 + S4 . (3.73)

We assume, that only the reactants are present in stoichiometric amounts at the begin-
ning of the reaction. Furthermore we use the extent variable ε(t) to simplify the kinetic
equation.

From this follows the conservation law

S1(0) + S2(0) = 2S1(0) = 2S1,eq + εeq . (3.74)
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t S1 S2 S3 S4

0 S1(0) S1(0) 0 0
t S1(0)− ε(t) S1(0)− ε(t) ε(t) ε(t)
∞ S1(0)− εeq S1(0)− εeq εeq εeq

Table 3.2: Relations between the reactants and products to the extent variable ε for the
reversible reaction (3.73).

The time law is

r(t) = −dS1(t)

dt
= −dS2(t)

dt
=

dε(t)

dt
= k2 S1(t) S2(t)− k−2 S3(t) S4(t)

= k2 [S1(0)− ε(t)]2 − k−2 [ε(t)]2 (3.75)

is analytically solvable. The integration by expansion into partial fractions gives

ln
ε(t) [S1(0)− 2εeq] + S1(0)εeq

S1(0)
[
εeq − ε(t)

] =
2S1(0) [S1(0)− εeq]

εeq
k2t (3.76)

after numerous rearrangements. We can use it as an instruction for the determination
of the rate coefficient k2. The second coefficient is obtained again from the equilibrium
solution

Keq =
S3,eqS4,eq

S1,eqS2,eq
=

ε2eq

[S1(0)− εeq]
2 =

k2

k−2
, (3.77)

as a generalization of the law of mass action for the bimolecular reversible reaction (3.73).

3.7 Parallel Reactions

In a parallel reaction, several reactions of the same reactants proceed side by side but
produce different end products. Each reaction mechanism can consist of an elementary
reaction, a reversible reaction, or a more complex mechanism. The reaction of one species
with several partners in the reaction volume is a competitive reaction and no parallel
reaction. We will discuss this towards the end of this section.

In order to illustrate some elementary properties of side reactions we consider the
first-order reaction

k1−→ S2

S1
k2−→ S3 (3.78)
k3−→ S4

composed of three irreversible monomolecular reactions. The species S1 is converted in a
unimolecular reaction into products S2, S3, and S4. The term ki dt is the probability that
the i-th reaction occurs in the time interval dt. The resulting kinetic equation is

r(t) = −dS1(t)

dt
= k1 S1(t) + k2 S1(t) + k3 S1(t)

= k S1(t) , (3.79)

where k is the total rate coefficient

k =
∑

i

ki (3.80)
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and k dt the probability, that one of the reactions takes place. The solution of such a
differential equation is known from the discussion of monomolecular reaction. In analogy,
we obtain for the temporal evolution an exponential expression

S1(t) = S1(0) exp{−kt} , (3.81)

where S1(0) is the initial concentration. The temporal evolution of the reactant is indis-
tinguishable from the evolution of a unimolecular reaction with the same rate coefficient.
More generally, the dynamic change of the reactants is for the same coefficient k indepen-
dent of the number of products.

The creation of products S2, S3, and S4 is governed by the kinetic equations

dS2(t)

dt
= k1 S1(t) ,

dS3(t)

dt
= k2 S1(t) ,

dS4(t)

dt
= k3 S1(t) , (3.82)

which can be transformed with (3.81) into

dS2(t)

dt
= k1 S1(0) exp{−kt} , . . . (3.83)

Integration leads the exponentials

S2(t) =
k1

k

[
1− exp{−kt}

]
S1(0) + S2(0) , (3.84)

S3(t) =
k2

k

[
1− exp{−kt}

]
S1(0) + S3(0) , (3.85)

S4(t) =
k3

k

[
1− exp{−kt}

]
S1(0) + S4(0) . (3.86)

The comparison of the transient concentrations8 shows a further important property of
parallel reactions. If we calculate the ratios of the dynamic concentrations

[S2(t)− S2(0)] : [S3(t)− S3(0)] : [S4(t)− S4(0)] = k1 : k2 : k3 (3.87)

we obtain the ‘Principle of Wegscheider’. It says, that the ratio is equal to the ratio of the
rate coefficients ki and constant.

The time evolution for the parallel reaction (3.78) is shown in Figure 3.7, for the
special case of S2(0) = S3(0) = S4(0) = 0. For these initial conditions we can expand the
conservation law to

S1(0) = S1(t) + S2(t) + S3(t) + S4(t) . (3.88)

At the end of the reaction, species S1 is completely consumed and (3.88) is determined
by the final concentration S2,f , S3,f , and S4,f . We obtain with (3.84)-(3.86) for these
concentrations

S2,f =
k1

k
S1(0) ,

S3,f =
k2

k
S1(0) ,

S4,f =
k3

k
S1(0) .

The concentrations are determined by the ratio of the individual rate coefficient ki and the
total rate coefficient k (3.80). The exponential decrease of S1 and the exponential increase

8The prefix transient distinguishes between the produced concentration in the temporal process of the
reaction and the initial concentrations. In this sense the full concentration is given by a transient and an
initial part.
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Fig. 3.7: The temporal evolution of the reactant S1 and the products S2, S3, S4 of the parallel
reaction (3.78) in units of the initial concentration S1(0). The horizontal lines denote the
final concentration S2,f , S3,f , and S4,f of the products.

of the product is clearly visible in the figure. For comparison, the product concentrations
at the end of reaction are also shown. The reaction S1 → S2 is the fastest reaction, hence
it is the main product of the side reaction (3.78).

These results are valid for parallel reactions in general. Recapitulating, parallel reac-
tions have the following behavior

• The time evolution of the reactants is independent from the number of products and
has the same order as each elementary reaction. It is determined by the total rate
coefficient (3.80), only.

• The fastest side reaction is strongest participant on the extent. It controls the main
product.

• The products are build in the ratio of their rate coefficient (Principle of Wegscheider).

Differentiation of parallel reactions and competitive reactions

In our discussion of parallel reactions we tried to show how a parallel reaction can be
separated from a competitive reaction in an experiment. In a parallel reaction the same
reactants can be transformed in different products. In a competitive reaction, for instance,
the reactant S1 participates in two independent reactions with different partners. For
instance, let us consider two bimolecular reactions

S1 + S2
k1−→ S4 + . . .

S1 + S3
k2−→ S5 + . . .

(3.89)
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with the common reactant S1. The corresponding system of coupled differential equations
is

dS1(t)

dt
= − (k1 S2(t) + k2 S3(t)) S1(t) ,

dS2(t)

dt
= −k1 S1(t) S2(t) ,

dS3(t)

dt
= −k2 S1(t) S3(t) , (3.90)

dS4(t)

dt
= k1 S1(t) S2(t) ,

dS5(t)

dt
= k2 S1(t) S3(t) .

If we use Wegscheider’s principle in differential form, we obtain with

dS4(t)

dS5(t)
=

k1 S1(t) S2(t)

k2 S1(t) S3(t)
=

k1

k2

S2(t)

S3(t)
(3.91)

an expression that depends on the present concentration of S2 and S3. For a parallel
reaction this ratio has to be a constant.

3.7.1 Consecutive Reactions

An important class of complex reactions are consecutive reactions. These reactions include
one or more unstable intermediates. Some partial reactions can be reversible and there
can be arborizations as a result of parallel reaction.

To simplify matters we consider a unidirectional and monomolecular sequence of reac-
tions

S1
k1−→ S2

k2−→ S3 , (3.92)

which is like a radioactive decay sequence, with initial condition S2(0) = S3(0) = 0. The
decay of S1 into the intermediate S2 is governed by the differential equation

dS1(t)

dt
= −k1 S1(t) , (3.93)

which the known solution
S1(t) = S1(0) exp {−k1 t} . (3.94)

The differential equation for S2 is more complicated. It consists of two parts

dS2(t)

dt
= k1 S1(t)− k2 S2(t) , (3.95)

where the first term describes the production of S2 from S1 and the second term the decay
into the final product S3. With (3.94) we transform this equation into a first-order linear
differential equation that can be solved analytically:

dS2(t)

dt
= S1(0) exp {−k1 t} − k2 S2(t) . (3.96)

We obtain for S2

S2(t) =
k1

k2 − k1
S1(0)

[
exp {−k1t} − exp {−k2t}

]
. (3.97)

The temporal evolution has a maximum at

tmax =
ln(k1/k2)

k1 − k2
. (3.98)
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This is a typical property for an unstable intermediate. In the beginning S1 decays faster
due to its higher concentration, whereas S2 decays slowly. The result is an increase of
the intermediate. In the course of the reaction the rate of decay of S1 decreases. At tmax

the production rate and the decay rate of the intermediate are equal. After this time the
decay rate is faster and S2 decreases, too. The corresponding concentration is

S2,max = S2(tmax) =

(
k1

k2

) k2
k2−k1

. (3.99)

If we use (3.97) the differential equation for the final product is

dS3(t)

dt
= k2 S2(t)

=
k1 k2

k2 − k1
S1(0)

[
exp {−k1t } − exp {−k2t}

]
. (3.100)

It is proportional to the time law of S2. Hence, the reaction rate of S3 has a maximum at
tmax. Remember we assumed S2(0) = S3(0) = 0, the conservation law

S1(0) = S1(t) + S2(t) + S3(t) , (3.101)

permits an easier way to solve the temporal evolution. The result

S3(t) = S1(0)

[

1− k2 exp {−k1 t} − k1 exp {−k2 t}
k2 − k1

]

(3.102)

changes the sign of its second derivative at tmax. This behavior results in a typical sig-
moidal shape of the time evolution of the final product, as shown in Figure 3.8. There
the time evolution for all three participating species is compared. The starting substance
S1 decreases with the exponential decay law (3.94). As mentioned before, intermediate
S2 first increases, goes through a maximum and finally decreases. The time at which the
maximum occurs and its value are plotted by thin dashed lines. Both are dependent on
the ratio of the rate coefficient k1 and k2. The time evolution of the final product S3 is a
monotonously increasing function with the predicted inflection point at tmax.
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Fig. 3.8: The temporal evolution of consecutive reaction (3.92) as a function of the dimen-
sionless time k1 t. On the y-axis the normalized concentrations S1(t)/S1(0), S2(t)/S1(0),
and S3(t)/S1(0) are plotted. Additionally the time tmax (3.98) and the maximum value of
the intermediate S2,max (3.99) are shown.

The radioactive decay sequence (3.92) is a simple example for a consecutive reaction.
Reactions of higher order or/and higher complexity lead to more complicated kinetic
equations and are often only numerically or approximately solvable.
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Principle of the rate-determining step

If one reaction is much slower than the others, we can simplify the formalism for a con-
secutive reaction. We consider again the radioactive decay sequence (3.92). First, let us
assume the case where k1 � k2, i.e., the second reaction is slower than the first. Now we
expand the prefactor9 in equation (3.97)

k1

k2 − k1
= − 1

1− k2/k1
≈
(

−1 +
k2

k1
+O

(
k2

2

k2
1

))

≈ −1 , (3.103)

where the symbol O(. . .) denotes the order in respect of the expansion parameter of first
neglected term of the expansion. The sign corresponds to the trend of contribution.
Furthermore we compare the exponential functions within the brackets. If k1 t is always
much greater then k2 t, we obtain

exp {−k2 t} � exp {−k1 t} (3.104)

and neglect the k1 dependent exponential function against the k2 dependent exponential.
With these approximations we obtain for the intermediate the new time law

S2,k2
(t) = S1(0) exp {−k2 t} (3.105)

and for the final product

S3,k2
(t) = S1(0)

[
1− exp {−k2 t}

]
. (3.106)
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Fig. 3.9: Comparison of the full solution for the consecutive reaction (3.92) and the ap-
proximation of the rate-determining step for a slow second partial reaction. After a short
starting time, the approximation shows good agreement with the full solution. We choose
k1 = 0.1 s−1 and k2 = 0.01 s−1 for this example. The concentrations are normalized to the
initial concentration S1(0).

Within this approximation, the temporal evolution is determined by the slow decay of
the intermediate S2 into the product S3. The subscript k2 shall denote this property and
distinguish between the full and the approximative solution. We compare both solutions in
Figure 3.9, where our main focus is on the final product. The decay of S1 is kept unchanged.
It is almost completely transformed into the intermediate before the intermediate decays

9

1

1 − x
≈ 1 + x + x2 + . . . for x � 1
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into S3. After a short starting time, the principle of the rate-limiting step is a good
approximation.

In a second part we now assume, that the decay of S1 is the slowest step of sequence
reaction (3.92). This means k1 � k2. We again expand the prefactor

k1

k2 − k1
=

k1

k2

1

1− k1/k2
≈ k1

k2

[

1 +
k1

k2
+O

(
k2

1

k2
2

)]

≈ k1

k2
(3.107)

and the comparison of the exponentials gets

exp {−k1 t} � exp {−k2 t} . (3.108)

We can now simplify equations (3.97) and (3.102), whereas the equation for S1 (3.94) re-
mains unchanged. Within this approximation the evolution of the intermediate is governed
by

S2,k1
(t) = S1(0)

k1

k2
exp {−k1 t} (3.109)

and of the final product by

S3,k1
(t) = S1(0)

[
1− exp {−k1 t}

]
= S1(0)− S1(t) . (3.110)

Again, the subscript denotes the rate-determining step. The comparison of the approxi-
mation and the full solution is shown in Figure 3.10. The production of the intermediate
is much slower than its decay. A molecule from species S2 is transformed practically im-
mediately into the final product. The concentration of the intermediate is always small in
comparison to S1 and S3. Also in this case, the approximation gives a good description of
the reaction except the very first time.
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Fig. 3.10: Comparison of the full solution and the approximation for a fast second step. The
rate coefficients are k1 = 0.01 s−1 and k2 = 0.1 s−1. The concentration of the intermediate is
always small in comparison to other species. It is transformed practically immediately into
S3.

We now give a more general discussion of the rate limiting step. If one step of a con-
secutive reaction is much slower than the others, it determines the total rate of reaction or
more precisely, the rate of all following steps. This reaction is called the rate-determining
step. The total reaction rate is the rate of the production of the final product of the se-
quence. This statement includes a further property of consecutive reactions. The reaction
rate is not equal for each step. Each partial reaction before the rate-determining step has
its own rate depending on the specific reaction and the steps before. The approximation
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of the rate-deterging step defines a limiting total reaction rate for the considered sequence.
The reaction rate for the described system cannot be faster than this limit. This is a di-
rect consequence from the principle of cause and effect. The effect cannot occur before the
cause, you cannot create a new species without its components. If there are faster steps
before the rate-determining step we obtain a congestion of its participating molecules.
If the following steps are faster they have to wait on the slower reaction. However, the
rate-determining step is not just the the slowest step: it must be slow and be a crucial
gateway for the formation of products. If a faster step also lead to products, the slowest
step is irrelevant because the slow reaction can be sidestepped. To finish our discussion
we have to give a criteria for which step in a consecutive reaction is the slowest.

For this purpose we discuss a more sophisticated model for an unimolecular reaction.
It was introduced by Lindemann and experimentally verified by Hinshelwood. Starting
point for the model is the idea that a single molecule is excited by a collision. The excited
molecule can loose its energy by a new collision or decays in a monomolecular step into
the product.

S1 + M
k2−−−→←−−−
k−2

S∗
1 + M

S∗
1

k1→ S2

The molecule M can be from species S1, S2 or an inert-gas. Here, an inert-gas is a gas
of other species, which not react with the considered molecules S1,S2, and S∗

1 . Collisions
between two excited molecules S∗

1 are negligible in comparison to the others. But a collision
is a clear bimolecular process, how we can get a first-order kinetics from this mechanism?
The rates for the components follow the system of coupled differential equations

dS1(t)

dt
= −k2 S1(t) M(t) + k−2 S∗

1(t) M(t) , (3.111)

dS∗
1(t)

dt
= k2 S1(t) M(t) + k−2 S∗

1(t) M(t)− k1 S1(t) (3.112)

dS2(t)

dt
= k1 S∗

1(t) . (3.113)

A simplification arises, if we use a steady state approximation for the excited molecule S∗
1 .

From (3.112), it follows

S∗
1(t) =

k2 S1(t) M(t)

k−2 M(t) + k1
, (3.114)

which we can insert into (3.111) or (3.113). The result for the reaction rate is

−dS1(t)

dt
=

dS2(t)

dt
=

k1 k2 M(t) S1(t)

k−2 M(t) + k1
(3.115)

for which no reaction order can be defined. For a closed system is M(t) ≈ const. and the
rate equation transforms to a pseudo-first order law

−dS1(t)

dt
=

dS2(t)

dt
= keff S1(t) , (3.116)

where the effective rate coefficient is

keff =
k1 k2 M

k−2 M + k1
. (3.117)

The effective constant depends on the collision partners M .
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Fig. 3.11: The effective rate constant keff as function of the collision partner M . For k2 M �
k1, see (3.117), the reaction follows second-order kinetics determined by the bimolecular
excitation of S1 and for k2 M � k1 first-order kinetics with the monomlecular decay into
the product S2 as product. We use the intersection of the asymptotes of keff to separate the
M -keff -plain into a bimolecular and unimolecular limited region.

Now, we go back to our original question and determine the rate-determining step.
For that purpose we consider different amount of M . First we assume k−2 M � k1. The
rate law simplifies to

−dS1(t)

dt
=

dS2(t)

dt
= k2 M S1(t) , (3.118)

which obeys second-order kinetics. The rate-determining step is the bimolecular collision
of S1 and M . On the other hand, if k−2 M � k1 we obtain a rate of first order

−dS1(t)

dt
=

dS2(t)

dt
=

k1 k2

k−2
S1(t) . (3.119)

The rate-determining step is now the monomolecular decay of excited molecules into prod-
ucts.

From this example we are able to define the rate-determining step. The rate-determining
step is the step with the smallest probability to occur within the time interval dt or the
with the smallest rate, respectively. The rate coefficient alone is not a proper criteria.
Only in special cases it is the process with the smallest rate coefficient. Remember, the
rate for an elementary reaction is the product of the rate coefficient and the participating
species. As we demonstrated the rate-determining step depends on the current condi-
tions in the reaction volume. For complex reactions often one cannot define an unique
rate-determining step. Instead one has to consider different regimes as we done it for the
sophisticated model of unimolecular reactions. Furthermore, the rate-step can be time de-
pendent. Complex reactions with (auto)catalytic reactions are a typical example for such
a behavior.

The (quasi-)steady state approximation

The second case of preliminary rate-determining step can be expand to a more rigorous
approximation. Let S2 an unstable intermediate with a short lifetime and small con-
centration in comparison to the other participants on the sequence. Its consumption is
approximatively simultaneously with its production. In this case we can assume for its
rate

dS2(t)

dt
≈ 0 . (3.120)
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It follows that the balance equation is given as

dS2(t)

dt
= k1 S1(t)− k2 S2(t) ≈ 0 , (3.121)

leading to the relation
k1 S1(t) = k2 S2(t) . (3.122)

From this we obtain

S2(t) =
k1

k2
S1(t) (3.123)

and finally from (3.100) the simplified time law

dS3(t)

dt
= k1 S1(t) (3.124)

for the final product. An integration leads again to 3.110.

At the end of this section we generalize the steady state approximation. Within this
approximation we assume, that during the major part of the reaction the rate of change of
intermediates are negligible small10. Thereby we neglect an initial time period, where the
intermediates rise from zero. In our previous examples, see Figure 3.9 and 3.10, the first
25 seconds cannot described with the approximation of the rate-determining step. For
the next minutes it is a good description. But a ratio of 10(0.1) is not a great difference
between the rate coefficient. We chose this ratio for demonstration purposes only.

The amount of the intermediates do not need to be negligible in comparison to the
reactants and products as we assume in our example. This more restrictive approximation
is often called a quasi-steady state.

The steady state approximation is a very powerful tool in the analytic treatment of
complex reactions. Because of the increasing mathematical complexity a reaction schemes
involving many steps is nearly always analytically unsolvable. One approach is a numerical
solution of the differential equation. An alternative approach is to make approximation.
On the other hand, an approximation restricted the range of validity of the model. For
instance, the steady state approximation in (3.112) assumes that the formation of the
excited molecule and its decay back into the deactivated form are much faster than the
formation of the product. This is only possible if k−2 � k1, but not when k−2 � k1.

Hence, the approximations of steady state and rate-determining step have to use care-
fully. Their validity is limited and has to recontrol for each specific reaction system and
its parameters. An usage far away from the validity region leads to wrong results.

3.8 Autocatalytic Reactions

A particular class of reactions are catalytic reactions. A catalyst accelerates the reactioncatalyst

and is released unmodified as product. It occurs as reactant and as product. Note, a
catalyst can affect only reactions happening from alone. In other words, the reactions
have to be possible from thermodynamic reasons. It also does not change the equilibrium
properties. In this section we want to discuss a special kind of catalytic reactions, the
autocatalytic reaction. In these reactions a product accelerates its own production. In
contrast to the other catalytic reactions we have not to add an additional substance.
Known examples for such reactions are chain reactions11. Thereby, one distinguishes
between two types of (auto)catalytic reactions12. The catalyst can increase the reaction

10Here negligible small means small in comparison to the rates of the other participating species.
11In a chain reaction substances are involved recycling in the reaction and starting a new reaction cycle.
12An acceleration is a change of velocity, not necessarily an increase.
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rate, unfortunately this behavior is called (auto)catalysis, too. The inverse effect of a
decrease of reaction rate is called (auto)inhibition. The corresponding substance is an
(auto)inhibitor.

For an introduction to autocatalysis we choose the simplest possible model, an unidi-
rectional monomolecular reaction. The stoichiometric formula is

S1
k−−→
S2

S2 , (3.125)

where the subscript S2 denotes, that the product S2 acts as autocatalyst. In a more
detailed representation one often uses the formula

S1 + S2
k→ 2S2 (3.126)

for an autocatalytic reaction. According to the second chemical formula the kinetic equa-
tion is

r(t) = −dS1(t)

dt
=

dS2(t)

dt
=

dε(t)

dt
= k S1(t) S2(t) (3.127)

= k
[
S1(0)− ε(t)

][
S2(0) + ε(t)

]
.

The autocatalytic effect of the product S2 formally increase the reaction order. But be
aware, this is only an ansatz not a full description of the reaction mechanism. The mech-
anism of catalytic reaction is often complicated, hence we forbear to specify it. Instead,
we discuss some basic properties in our model.

The autocatalytic reaction fulfills the conservation law

S1(0) = S1(t) + S2(t)− S2(0) , (3.128)

where we assume an initial concentration of the autocatalysator. Kinetic equations (3.127)
are solvable by separation of variables. The integral

kt =

ε(t)∫

0

dε(t)
[
S1(0)− ε(t)

][
S2(0) + ε(t)

] (3.129)

is solved by an expansion into partial fractions. We obtain

kt =
1

S1(0) + S2(0)
ln

S1(0)

S2(0)

S2(t)

S1(t)
(3.130)

from which we get

S1(t) =
S1(0) + S2(0)

S2(0)/S1(0) exp
{ [

S1(0) + S2(0)
]
kt
}

+ 1
(3.131)

and

S2(t) =
S1(0) + S2(0)

S1(0)/S2(0) exp
{

−
[
S1(0) + S2(0)

]
kt
}

+ 1
(3.132)

for the reactant and the product as function of time. Both functions have an inflection
point typically for autocatalytic reactions at

tip =
1

[
S1(0) + S2(0)

]
k

ln
S1(0)

S2(0)
. (3.133)
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The associated concentrations are

S1,ip =
S1(0) + S2(0)

2
= S2,ip . (3.134)

Also, the reaction rate shows some interesting and typical properties. At the beginning
the rate is small, because of the small amount of the catalysator. With increasing concen-
tration of S2 the rate increase and reach a maximum

rmax =
k

4
(S1(0) + S2(0))

2 (3.135)

at the same time point (3.133), where the concentrations have their inflection point. After
this point the reaction gets slower because of the decreasing amount of the reactant S1.
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Fig. 3.12: The time evolution and the reaction as function of time for the autocatalytic
reaction (3.125). We use normalized units for the concentrations and the time dependent
rate. The time is plotted in units of the time of the inflection point (3.133). In contrast to
uncatalized monomolecular reaction the reaction rate is an increasing function for t < tip.

In Figure 3.12 the time-dependent normalized concentrations S1(t), S2(t) and the
normalized reaction rate are plotted. The time is in units of the inflection point. As men-
tioned before the concentrations have an inflection point where the reaction rate reaches
its maximum.

The reaction starts with a small but finite initial concentration of the autocatalyst
S2. Without this condition the ansatz for the reaction rate does not work. We avoid this
non-physical behavior by invoking an extra uncatalysed reaction converting S1 directly to
S2. How we mentioned before such a reaction must exist, but it can be very slow. The
rate equation is now

r = −dS1(t)

dt
=

dS2(t)

dt
=
[
k0 + k S2(t)

]
S1(t) , (3.136)

where k0 is the rate coefficient of the uncatalysed unimolecular reaction. After an initial
time the second term within the brackets is dominant resulting in (3.127).
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Fig. 4.1: Processes in the cell occur at widely differing time scales. If a process is relatively
fast, relative to the one we are considering, we may assume that changes in this process are
instantaneous. If on the other hand a process is relatively slow to the one we consider, we
may assume the variable to be constant. Picture adopted from [Fel97].

4 Stochastic Modelling and Simulation

The study of cellular dynamics is closely linked to the concept of a pathway. Here we con-
sider a pathway as a network of biochemical reactions. We distinguish between metabolic pathways

pathways and signalling pathways. In metabolic analysis one looks for a system in a steady
state such that dS/dt = 0. In signal transduction or cell signalling, we care for processes
that transduce a signal. We are thus mostly interested in transient phenomena. In any
case, it is of vital importance to be aware of the time scale in which we model observations.
Processes in the cell occur across a wide range of time scales. For modelling this means
that processes that are very slow in comparison to the one we model, can be assumed
as constant (see Figure 4.1). In many cases this makes the model much simpler without
loosing too much realism.

4.1 Common Roots: To be and not to be (the same)!

Let us now come to the main question that occupies the modeller: which conceptual
framework should we choose to describe biochemical reactions, networks or changes in
molecular populations? We started off with the argument that molecules mix and collide,
i.e., there is some randomness to the process. Implicit in the concept of a rate is some
form of averaging with regard to random collisions and making observations. On the other
hand, our models so far are deterministic since they predict exact values for S(t) without
any explicit considerations for random fluctuations. Our assumption of a large number
of molecules was also a little shaky in that we need to answer what we mean by “large”.
Surely for ‘fewer’ molecules the processes are more random than for observations across a
large population. As we are going to show, ODEs are a deterministic representation but
only with respect to a perceived average of a process that is subject to random fluctuations.
A physicist would not necessarily consider the model (3.2) deterministic since it does not
represent molecules as particles in the position-momentum phase space. If we therefore
describe (3.2) as a deterministic model, we accept some random mechanism and/or mea-
surement noise but conclude this to be negligible for our chosen level of modelling. To call
a model ‘deterministic’ because it uses differential equations is misleading since we will
find that a stochastic representation of biochemical reactions also gives a set of differential
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equations, with probabilities as the variables.

Above we derived law of mass action (LMA) models, making the assumption that while
there may be random mechanism at work, the effects are negligible to what we observe.
A different approach, which nevertheless has, like the LMA model, its roots in (3.1), is to
associate the number of molecules present with probabilities. This leads to a stochastic
model and we are going to discuss various ways to derive such stochastic representation(s).
Suppose the number of molecules of reactant S can be any positive integer n, #S

.
= n for

ease of notation. The most elementary stochastic model would need to deal with Pn(t), the
probability that there are n molecules of S at time t. Considering the temporal evolution
of this population, we regard Pn as a function of discrete time t and ask for the dynamic
equations which govern its development. That is, we want to express Pn(t + ∆t) in terms
of Pm(t) for all m, that is, to express the probability of having n molecules at time t+∆t in
terms of the probabilities of all the possible values for the number, m of molecules at time
t. The occurrence of event #S(t + ∆t) = n can be thought of as the occurrence of eitherevent

event the joint event (#S(t + ∆t) = n, #S(t) = 1) or event (#S(t + ∆t) = n, #S(t) = 2)
or . . . These events are mutually exclusive, and hence the addition law of probabilities
implies that

P
(
#S(t + ∆t) = n

)
=
∑

m

P
(
#S(t + ∆t) = n, #S(t) = m

)
(4.1)

where we consider n as fixed for the moment, while m is varied. From the definition of
conditional probability we have

P
(
#S(t + ∆t) = n, #S(t) = m

)
= P

(
#S(t) = m

)
· P
(
#S(t + ∆t) = n | #S(t) = m

)

Substituting this in (4.1), we get

P
(
#S(t + ∆t) = n

)
=
∑

m

P
(
#S(t + ∆t) = n | #S(t) = m

)
· P
(
#S(t) = m

)
.

Using a more compact notation where for each possible m we write pm,n for the transition
probability of having n molecules at any time, conditional upon there being m moleculestransition probability

at the immediately preceding time, the stochastic process model is given as

Pn(t + ∆t) =
∞∑

m=1

pm,nPm(t) .

This stochastic representation, in terms of transition probabilities describes a class of
stochastic processes called Markov processes. It is assumed that this transition probabil-Markov processes

ity does not itself explicitly depend upon the time at which the transition occurs, and the
Markov process, or Markov chain, is called homogenous with respect to time1. The fact
that the transitions depend only on the previous step/state is called the Markov assump-
tion. One of the simplest cases of this is when the transition can only take place by an
increase or a decrease of just one individual. Thus pm,n = 0 unless m = n− 1, n or n + 1.
It then follows that

pn,n = 1− pn,n+1 − pn,n−1 . (4.2)

Thus the dynamic equation and stochastic equivalent of (3.5) is

Pn(t + ∆t) = pn−1,n · Pn−1(t) + pn+1,n · Pn+1(t) + (1− pn,n+1 − pn,n−1) · Pn(t) . (4.3)

The pattern of (4.3) will be a recurrent theme in subsequent sections. The probability
of n molecules at time (t + ∆t) is composed of the sum of term which describe possible

1While for a homogenous Markov process the transition probabilities do not depend on time explicitly,
they are through n(t) implicitly a function of time.
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previous states, multiplied by their transition probabilities. The sum reflects a disjunc-
tion of statements reflecting events and the product reflects the conjunction (“and”) in
describing the evolution of the system. One approach to define the transition probabilities
is to assume they are proportional to n:

pn−1,n = k+(n− 1)∆t , pn+1,n = k−(n + 1)∆t ,

pn,n−1 = k−n∆t , pn,n+1 = k+n∆t .

Substituting this in (4.3), we get

Pn(t + ∆t) = k+(n− 1)∆tPn−1(t) + k−(n + 1)∆tPn+1(t) + (1− k+n∆t− k−n∆t)Pn(t)

= k+(n− 1)∆tPn−1(t) + k−(n + 1)∆tPn+1(t)− (k+ + k−)n∆tPn(t) + Pn(t) .

Taking Pn(t) to the left-hand side and dividing by ∆t, we have

Pn(t + ∆t)− Pn(t)

∆t
= k+(n− 1)Pn−1(t) + k−(n + 1)Pn+1(t)− (k+ + k−)nPn(t) . (4.4)

Taking the limit as ∆t→ 0, gives us a differential equation dPn(t)/dt and the solution of
which is an equation that gives us the probability of n molecules at time t, an example
of the CME (2.25). We will return to the question when a discrete-time description turns
into a continuous representation and we are going to derive (4.4) later on. We do however
note that for simulation purposes, from (4.2), we have pn,n+1 + pn,n−1 ≤ 1 and thus

∆t ≤ 1

(k− + k+)n
.

The larger the number of molecules, the smaller the sampling intervals must be.

Suppose we would now like to derive from this a deterministic equation for the mean
number of molecules at any time. This mean or ensemble average, denoted 〈S(t)〉, has the
form

〈S(t)〉 =
∞∑

n=1

n · Pn(t) . (4.5)

We can therefore multiply the dynamic equation by n and sum over n; this automatically
gives us on the left-hand-side the value of S at time t + ∆t. The aim is to derive an
expression in which the the right-hand-side turns out to be expressible just in terms of S
at time t; that would lead to an exact deterministic dynamical equation for S. Let’s see
what happens if we insert (4.3) in (4.5). We get

〈S(t + ∆t)〉 =
∞∑

n=1

n
[

pn−1,n · Pn−1(t) + pn+1,n · Pn+1(t) + (1− pn,n+1 − pn,n−1) · Pn(t)
]

=
∞∑

n=1

(n + 1)pn,n+1Pn(t) + (n− 1)pn,n−1Pn(t) + n(1− pn,n+1 − pn,n−1)Pn(t)

=
∞∑

n=1

(n + pn,n+1 − pn,n−1)Pn(t) .

The most obvious way to make this depend upon S(t) only is to make pn,n+1, pn,n−1

constant multiples of n, say pn,n−1 = k− · n ·∆t, pn,n+1 = k+ · n ·∆t and let ∆t = 1 be
some unit time. In which case we get the deterministic equation

S(t + 1) = (1 + k+ − k−)S(t) , (4.6)
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which is equivalent to (3.5) if we approximate dS/dt with (3.7). In general, this is an
example of the linear first-order homogenous difference equation S(t+1) = a(t)S(t), with
solution

S(t) =

[
t−1∏

i=1

a(i)

]

S(0) .

Note that the stochastic model we started off with, was not based on physical consider-
ations of how molecules interact. The latter of which would involve a description of the
velocities with which the molecules move.

4.2 A matter of life and death

In the present section we derive, like in the previous section, a stochastic equivalent for the
simple reaction (3.2), but here we describe this process in the framework of Poisson and
birth-death processes, which are special cases of Markov processes. The obvious conclusionbirth-death processes

from this section is then that there are many equivalent ways of deriving a chemical master
equation. The different flavors of the derivations do however give us practice in thinking
probabilistically. We find that there are different levels at which we can model a system:
considering a population as a whole or starting off at the level of molecules and then
generalizing towards a population of molecules. In either case, various assumptions have
to be made as otherwise the model may be more realistic or too complicated. There
may be assumption about the system or experimental set-up (e.g. constant temperature,
constant volume), or assumptions for mathematical convenience (e.g. modelling single-step
changes). Choosing a suitable modelling framework, whether stochastic or deterministic,
and deriving the model is an art, which makes this process so interesting.

S is considered again a discrete variable, accounting for the actual number of molecules.
For each model, we first consider probabilities describing individual molecules before ag-
gregating these to describe changes in a population. This will be helped by the assumption
that molecules are independent, i.e., whatever happens to one molecule is independent of
other molecules (of the same species). This assumption may not always be realistic but is
certainly convenient. Our strategy is to first consider a model for growth in a population
and then a separate model for decay, before combining both into a stochastic model that
is equivalent to (3.5).

Let us first look a process by which a molecule will ‘replicate’ itself, or is replicated by
whatever means, and then consider the population. The probability for a molecule S (j)

from a population with j = 1, . . . , S(t) molecules to replicate itself during a small time
interval ∆t is

b1(∆t) = k+∆t + o(∆t2) , (4.7)

where k+ is the constant average rate (1/sec) at which the molecule replicates. Note that
we use S, #S and n interchangeably to denote the number of molecules in the population.
The term o(∆t2) accounts for other effects, which for small enough time intervals, are
negligible. The transition probability function is thus approximated by a Taylor series
and o(∆t2) describes terms of order ∆t2 and higher. The appearance of a term with ∆t2

can be explained as follows (see Figure 4.2). Consider the time interval (t, t + ∆t) being
divided into two, (t, t + α∆t) and (t + α∆t, t + ∆t), where 0 ≤ α ≤ 1. The probability for
the events to occur in their respective time intervals is

b1(α∆t) = k+α∆t and b1

(
(1− α)∆t

)
= k+(1− α)∆t .

The probability for more than one event in (t, t + ∆t) is thus the probability for an event
in (t, t + α∆t) and subsequently one in (t + α∆t, t + ∆t), i.e., the product of the two
probabilities above, leading to terms with ∆t2.
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timet t + α∆t t + ∆t

b1(α∆t) = k+α∆t

b1((1− α)∆t) = k+(1− α)∆t

Fig. 4.2: The picture illustrates the occurrence of quadratic terms of ∆t. See the text for
an explanation.

The probability for #S not to change during the interval (t, t + ∆t) is

b0(∆t) = 1− b1(∆t)

= 1− k+∆t− o(∆t2) . (4.8)

Equations (4.7) and (4.8) suggest that the probability could become negative. For this
not to happen, ∆t must be rather small in comparison to 1/k. Finally the probability for
any change m to be different to zero or one is negligible

bm(∆t) = o(∆t2) .

These considerations for one molecule should be extended to a population of S(t) identical
S molecules at time t. Define

∆S
.
= S(t + ∆t)− S(t) .

Then the probability of no change in the entire population is obtained as

Prob{∆S = 0} =

S(t)
∏

j=1

b
(j)
0

=

S(t)
∏

j=1

(
1− k+∆t− o(∆t2)

)

= 1− S(t)k+∆t− o(∆t2) . (4.9)

The probability for an increase of one in the entire population is obtained from the union
(
∑

) of single changes for a molecule j and (
∏

) that the others do not replicate:

Prob{∆S = +1} =

S(t)
∑

j=1

b
(j)
1
︸︷︷︸

(4.7)

∏

i6=j

b
(i)
0
︸︷︷︸

(4.8)

=

S(t)
∑

i=1

k+∆t
(
1− (S(t)− 1)k+∆t

)

︸ ︷︷ ︸

from (4.9)

−o(∆t2)

= S(t)k+∆t(1− (S(t)− 1)k+∆t)− o(∆t2)

= S(t)k+∆t−S(t)(k+)
2
∆t2(S(t)− 1)

︸ ︷︷ ︸

part of o(∆t2)

−o(∆t2)

= k+S(t)∆t− o(∆t2) , (4.10)

and Prob{∆S = +m} for m ≥ 2 is o(∆t2), i.e., negligible. We have few more steps to take
before we obtain the CME, so let us summarize where we are: If at time t there are n > 0
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molecules in the population, the probability that in the interval (t, t + ∆t) one molecule
is added, equals (4.10), where k+ > 0. The probability of two or more molecules to be
added is o(∆t2). An expression for Pn(t) is obtained by first considering the probability
for n molecules at t+∆t, which can be the result of two previous situations: no change or
an increase by one since time t. We consider a ∆t such that other changes are negligible.
If there is no change, we have for the first term the conjunction Prob{∆S = 0}Pn(t), to
represent the statement “Pn(t) and no change”. For the second term, a change of one
implies that previously S(t) = n− 1 at t, leading to

Pn(t + ∆t) = Prob{∆S = 0}Pn(t) + Prob{∆S = +1, S(t) = n− 1}Pn−1(t) .

Inserting (4.9) directly, and (4.10) with consideration for S(t)− 1, into this equation, we
obtain

Pn(t + ∆t) =
(
1− nk+∆t

)
Pn(t) + k+

(
n− 1

)
∆tPn−1(t)− o(∆t2) . (4.11)

The next step towards an equation for Pn(t) is to divide (4.11) by ∆t

Pn(t + ∆t)− Pn(t)

∆t
= −nk+Pn(t) + k+

(
n− 1

)
Pn−1(t)−

o(∆t2)

∆t
.

Taking the limit ∆t→ 0, leads us to a system of differential-difference equationsdifferential-difference
equation

dPn(t)

dt
= −k+nPn(t) + k+

(
n− 1

)
Pn−1(t) n = S(0), S(0) + 1, . . . (4.12)

with initial conditions

Pn(0) = 1 for n = S(0)

= 0 otherwise.

Equation (4.12) is a balance equations where the first term on the right-hand side describes
the source term for transitions from n−1 to n and the right term is a sink term describing
changes from n to n − 1. This set of equations is then the stochastic model or master
equation for which the solution describes Pn(t). Although the differential-difference equa-
tions are linear, the set of equations is infinite and we can therefore not apply an matrix
algebraic methods that can be used to solve linear differential equations. The solution
requires the use of moment generating functions2, leading to

Pn(t) =

(
n− 1

n− S(0)

)

e−k+S(0)t
(

1− e−k+t
)n−S(0)

for n ≥ S(0). The expected population size is obtained as

E[S(t)]
.
= 〈S(t)〉 =

∞∑

n=0

nPn(t) = S(0)ek+t , (4.13)

which shows that the mean population size from the stochastic model, (4.13), is equal to
the population size of the deterministic model (3.3). It is interesting that this relationship
does not hold in general, i.e., the deterministic model does not always emerges as the mean
of the stochastic model. We are going to consider a counter example in Section 4.3.

Before continuing with a similar model for a decreasing population, let us discuss the
concept of treating a population of molecules as a birth-death process. Equation (4.7)
considers a molecule as if it is an organism that can give birth. Looking at the human

2Moment generating function feature prominently in Section 4.7.4.
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(female) population, the constant average rate k+ would be determined by looking at the
fact that on average a family has, say, two children and that these are born between the
women’s age of about 25-35. This means that to determine parameter k+ we implicitly
require the existence of a population from which to determine the value. We also note
that in case of the human population, while for the individual woman it makes only sense
to talk of changes approximately every 12 months, looking at the population, children
can be born any hour, minute or second. In other words as the number of elements in a
population increases we can approximate the discrete-time process by a continuous time
model.

Looking at (4.7) we might argue that with the assumption of a constant average rate,
the crucial element of the random process considered, is when an event occurs. A standard
model for stochastic processes where independent events, occur randomly in time, is the
Poisson process. Let us take this perspective on the events occurring in molecular popu- Poisson process

lations. Treating S(j)(t) as a time-varying random variable, representing the population
size at time t, we consider the continuous-time probability distribution of the population
that has arisen from S(j)

Prob
{

S(j)(t) = m
}

.
= pm(t) =

(λt)me−λt

m!
, t ≥ 0 , (4.14)

where m = 0, 1, 2, . . . and λ is the rate of arrival/replication for a molecule indexed by
j. Note that there we are looking at the population of molecules that has arisen from
molecule S(j) (4.14) is thus a Poisson probability distribution function with parameter λ.
For this to be a probability distribution, we must have

∞∑

m=0

pm(t) = 1 .

Deriving the derivative of (4.14), we note that

d

dt
e−λt = −λe−λt and

d

dt

(λt)m

m!
=

λm

m!
mtm−1 .

Then using the product rule for differentiation, d(u · v)/dt = du/dt · v + u · dv/dt,

dpm

dt
=

λm

m!
mtm−1 · e−λt − λmtm

m!
· λe−λt

=
(mtm−1 − λtm)

m!
λme−λt

=
(m− λt)

m!
λmtm−1e−λt , (4.15)

where in the last step we made use of the fact that

mtm−1 − λtm = tm−1

(

m− λ
tm

tm−1

)

= tm−1(m− λt) .

The maximum values of the probabilities for fixed m occur at t = m/λ, where dpm(t)/dt =
0. Say we are looking for a change of one molecule for S(j)(t0) = 0, this is most likely to
happen in the interval ∆t = 1/λ. In simulating such a process, we would therefore require
a sampling rate of about 1/λ or less to be able to capture the dynamics at a high enough
resolution. For m = 0,

dp0(t)

dt
= −λe−λt . (4.16)
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From (4.14), (4.15), (4.16) it follows that

dp0(t)

dt
= −λp0(t) , (4.17)

dpm(t)

dt
= λ

(
pm−1(t)− pm(t)

)
, m ≥ 1 . (4.18)

We can consider these differential-difference equations to have arisen from a limiting pro-
cess

dpm(t)

dt
= lim

∆t→0

pm(t + ∆t)− pm(t)

∆t
,

such that for small ∆t, we can write

p0(t + ∆t)− p0(t)

∆t
≈ −λp0(t) ,

pm(t + ∆t)− pm(t)

∆t
≈ λ

(
pm−1(t)− pm(t)

)
,

so that

p0(t + ∆t) ≈ (1− λ∆t)p0(t)

pm(t + ∆t) ≈ pm−1(t)λ∆t + pm(t)(1− λ∆t) . (4.19)

The probability of a single increase in the population can be obtained by setting m = 1
and assuming there were zero elements at t0, i.e., p0(t) = 1 and p1(t) = 0. Inserting this
into (4.19), the probability for a single molecule increase in the short time interval ∆t is
equal to λ∆t and that the probability for increases of two or more molecules is negligible.
This conforms with what we said for (4.7) and we might as well have started with the
Poisson model. (4.19) considers a molecule but for a population of n molecules, we must
replace the rate λ with n multiples of k+ with regard to Pn and with k+(n − 1) w.r.t.
Pn−1, and where Pn replaces pm such that we would obtain (4.11) as a representation for
the entire molecular population. We have therefore n independent Poisson processes, each
represent a molecule, occurring in parallel.

Accepting the derivation of a growth model for the population of molecules, (4.12) , we
are now returning a separate model for the decay of the molecular population. In analogy
to (4.9) and (4.10),

d0(∆t) = 1− k−∆t− o(∆t2)

d−1(∆t) = k−∆t + o(∆t2) ,

where k− is the constant average decay rate. It follows

Prob{∆S = 0} = 1− S(t)k−∆t− o(∆t2)

Prob{∆S = −1} = k−S(t)∆t + o(∆t2) . (4.20)

To combine formation and decay in one model we have two expressions for “no change”,
which are combined as a product:

Prob{∆S = 0} = 1− S(t)(k+ + k−)∆t− o(∆t2) . (4.21)

Together the transition probabilities (4.10), (4.20), and (4.21) describe the formation and
decay of the population of molecules. For a full analysis of a general birth-death process
see for example [JS01]. A notable result is that from an expression for the variance of
the population, if k+ > k−, the behavior of the population is predicted with much less



4.3. MASS ACTION MODELS THE AVERAGE OF THE CME? 79

precision [Row94]. Due to the fact that we are dealing with a Poisson process, the variance
of the population size increases without limit and the actual behavior is difficult to access.

To complete our collection of equations, for a death process, we would obtain a set of
equations, analogous to (4.12):

dPn(t)

dt
= −k−nPn(t) + k−(n + 1)Pn+1(t) .

The differential-difference master equations for the combined birth-death process were
derived above, see (4.4):

dP0(t)

dt
= k−P1(t)

dPn(t)

dt
= k+(n− 1)Pn−1(t)− (k+ + k−)nPn(t) + k−(n + 1)Pn+1(t) .

The expected population size for k+ 6= k− is given by

〈S(t)〉 = S(0) · e(k+−k−)t ,

as we set out to show, beginning with (3.5). We note that these birth-death processes
assumed that the total rates k+ and k− are proportional to the population size. This can
be generalized to consider possibly more accurate cases in which for example k− increases
for larger population sizes, a situation referred to as crowding.

One might argue that the stochastic model (4.12) is more realistic than (3.2) because
it considers random fluctuations of the population size. We do however note that it is only
a marginally more ‘accurate’ representation. Both types of models consider observations
on a pool of molecules. Its derivation was somewhat more elaborate and solutions to a
stochastic model are in virtually all cases more difficult to obtain than for the deterministic
model. It was for this reason that Gillespie developed an approach to simulate a stochastic
model efficiently. His stochastic model can be derived from distributions that describe a
chemically reacting system of classical molecules in a position-momentum phase space. He
therefore provides a physical model of molecules colliding and derives from this a stochastic
model, as well as an algorithm that gives exact simulations of this model. This will be
further discussed in Section 4.5. It is also important to remember that a stochastic model
is in mathematical terms a stochastic process - a mathematical abstraction, specifically a
sequence of random variables, of an biochemical process whose development is governed
by probabilistic laws. A stochastic process is thus a mathematical concept and should not
be confused with the biological process itself.

4.3 Mass action models the average of the CME?

In the previous two sections we found for the monomolecular reaction, that a LMA model
was obtained from taking the expectation of the stochastic chemical master equation
model. In other words, the LMA model determined the mean value of the stochastic
model. This raised the question, whether this is true in general. In this section we look
at an example where taking the expectation of the stochastic model does not recover the
deterministic model of differential equations. We are going to conclude that chemical
master equations are not suitable to describe average processes.

A frequently studied system of nonlinear differential equations was first investigated
by Lotka and Volterra in 1925 and 1926. The coupled differential equations are given as

dS1

dt
= k1AS1 − k2S1S2

dS2

dt
= k2S1S2 − k3S2 .
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In its original context, S1 is to symbolize the prey, S2 the predator, and A the food of the
prey. As a reaction diagram we could write

S1 + A
k1−→ 2S1

S1 + S2
k2−→ 2S2

S2
k3−→ B .

The first equation describes how S1 increases, facilitated by A. The second equation
represents how S2 increases, facilitated by S1. The last equation describes decay of S2 by
other means.

A probabilistic model is based on the assumption that in an infinitesimal time ∆t,
probability for changes in the number of molecules is given by

Prob{∆S1 = 1 | ∆S2 = 0} = k1AS1∆t

Prob{∆S1 = −1 | ∆S2 = 1} = k2S1S2∆t

Prob{∆S1 = 0 | ∆S2 = −1} = k3S2∆t

Prob{∆S1 = 0 | ∆S2 = 0} = 1− (k1AS1 + k2S1S2 + k3S2)∆t

For a the sake of an easier notation, we write S instead of #S to denote the number of
molecules of S. Next, we use the Chapman-Kolmogorov equation to write the probability
at t + ∆t as a sum of terms, each of which represents the probability of a previous state
multiplied by the probability of a transition to state (S1, S2). We get

P (S1, S2, t + ∆t)− P (S1, S2, t)

∆t
= k1A(S1 − 1)P (S1 − 1, S2, t)

+ k2(S1 + 1)(S2 − 1)P (S1 + 1, S2 − 1, t)

+ k3(S2 + 1)P (S1, S2 + 1, t)

−
(
k1AS1 + k2S1S2 + k3S2

)
P (S1, S2, t) .

Suppose we now wish to get the equation for the expectation of S1:

E[S1] =

∞∑

S1,S2=0

S1P (S1, S2, t) .

We have

Ė[S1] =
∞∑

S1,S2=0

S1Ṗ (S1, S2, t)

=
∞∑

S1,S2=0

S1

[

k1A(S1 − 1)P (S1 − 1, S2, t) + k2(S1 + 1)(S2 − 1)P (S1 + 1, S2 − 1, t)

+ k3(S2 + 1)P (S1, S2 + 1, t)−
(
k1AS1 + k2S1S2 + k3S2

)
P (S1, S2, t)

]

.

Changing the sum indices to get every term to contain P (S1, S2, t) we find, after some
cancellation,

Ė[S1] =
∞∑

S1,S2=0

k1AS1 − k2S1S2 = k1AE[S1]− k2E[S1S2] . (4.22)

The next step would require

E[S1(t)S2(t)] = E[S1(t)] · E[S2(t)] at any t,
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to make it an equation about expectations only: at present it is an equation about cross-
correlations between the variables. Viewing S1(t) and S2(t) as (mean removed) time series,
the equation above implies that they are uncorrelated sequences. Viewing S1 and S2 as
random variables, the equation implies they are independent random variables. That last
move to turn the stochastic model into a deterministic “average representation” would thus
require the variables S1, S2 to be independent, but the very nature of the given coupled
differential equations is a statement that this is not the case. Chemical master equations
are therefore not suitable to model average processes. On the other hand, looking at the
molecular interactions, collisions of usually larger numbers of molecules it seems that it
would not make sense to have an accurate, physically realistic model. Instead in most cases
the experimentalists obtain the rate constants k, which implicitly considers an “average
process”.

4.4 Review: Mass action models and CMEs

Before moving on to the Gillespie stochastic framework, we summarize in this section
the law of mass action and chemical master equation approach to represent biochemical
reactions with ordinary differential equations.

In considering biochemical reaction networks or pathways, we suppose a compartment
with volume V , containing a spatially homogenous mixture of #Si molecules of chemical
species Si, i = 1, . . . , N . These N species can interact through M reaction channels Rµ,
µ = 1, . . . , M . Examples for elementary reactions are:

A + B → C = AB : complex formation

AB → A + B : dissociation

A→ B : conversion

A→ ∅ : degradation

∅ → A : creation

More complex reaction schemas can be constructed from those elementary irreversible
ones. Note that each Rµ reaction is therefore uni-directional and any reversible reaction
is decomposed into two separate reaction channels. For example, the common enzyme- reaction channels

kinetic reaction

E + S ←→ ES → E + P (4.23)

can be decomposed into a set of three basic reactions:

{E + S
k1−→ ES, ES

k2−→ S + E, ES
k3−→ E + P} .

Note that, depending of whether a reaction is monomolecular, bimolecular, or trimolec-
ular (i.e., how many reactant molecules are involved on the left-hand side of the reaction

diagram), the rate constant k will have different units. So for example, for ES
k−→ . . . we

would obtain an ODE equivalent of the kind Ṡ = kS and k is in sec−1, regardless of whether

S is a concentration or a count of molecules. For the bimolecular reaction E + S
k−→ . . .,

the ODE equivalent is Ṡ = kS1S2 such that k is in M−1sec−1 if we consider counts of
molecules (in mol) and L/(mol sec) if we consider molar concentrations. For a trimolecu-
lar reactions S1+S2+S3 → . . . and Ṡ = kS1S2S3, k is in M−2sec−1. For three molecules to
simultaneously to collide in an infinitesimal interval of time, dt, is proportional to dt2, and
generally very unlikely3, and the probability of which is denoted o(∆t2). In fact, this was

3The get-to-together of three molecules is only unlikely if one subscribes to the collision theory that
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requirement for the Markovian framework of the stochastic models developed in Section
3. If we nevertheless want to consider trimolecular reactions in stochastic models, this can
be done by introducing a dummy variable, an unstable intermediate product with a short
life time, S∗ such that

S1 + S2

k1−→←−−
k2

S∗ and S∗ + S3
k3−→ S4 ,

where 1/k2 is the life time of the intermediate product, and k2 � k1 such that we can
consider the trimolecular reaction in terms of two bimolecular and one monomolecular
reactions.

The most important statement and fundamental assumptions for modelling are that
molecules move independently, i.e., we are dealing with sufficiently low concentrations,
that the volume and temperature are constant. This seems to contradict the common
statement that for low concentrations a stochastic model is more appropriate, while an
mass action model is considered for larger fluxes of molecules. However, a large number of
molecules does not imply a high concentration, if the action takes place in a large volume.
Looking at the reversible reaction, S1 + S2 ↔ S3, the complex S3 = S1S2 is formed at a
rate kf , and dissociates at a rate kd. We find that if we derive a mass action model, we
implicitly make use of an stochastic interpretation. The change in S3 has two components:

(f) Increasing the number of S1 or S2 molecules, will proportionally increase the number
of S1-S2 encounters that give rise to S3.

(d) A given S3 molecule acts entirely independent of other S3 molecules, which means
that it has a certain probability per unit time of breaking apart into S1 and S2. This
is equivalent to saying the rate at which S3 molecules break apart is proportional to
the number of molecules present.

Putting this together in an equation, we have

d[S1]

dt
= −kf [S1][S2] + kd[S3] . (4.24)

The rate equations for S1 and S2 are simply equal to −d[S3]/dt, i.e., when a molecule
S3 is formed, an S1 molecule and a S2 molecule disappear. Table 4.1 summarizes basic
biochemical reactions and their LMA representation.

For the enzyme kinetic reaction (4.23) we obtain the following set of nonlinear coupled
differential equations as a special case of the mass action model (2.23)

d[S]

dt
= −k1[S]([E]0 − [ES]) + k2[ES],

d[ES]

dt
= −(k2 + k3)[ES] + k1[S]([E]0 − [ES]),

where we write [S] instead of [S](t) and [S]0 instead of [S](0), for short. The conservation
law [E]0 = [E]− [ES] reflects the role of E as a catalyst for which the total enzyme (free
and bound) remains constant. From (2.25), the chemical master equation is

dP (#S, #ES; t)

dt
= −

[
k1#S(#E0 −#ES) + (k2 + k3)#ES

]
P (#S, #ES; t)

+ k1(#S + 1)(#E0 −#ES + 1)P (#S + 1, #ES − 1; t)

+ k2(#ES + 1)P (#S − 1, #ES + 1; t)

+ k3(#ES + 1)P (#S, #ES + 1; t) ,

(4.25)

treats molecules as floating around in gas-phase. We should not forget that we are aiming at an under-
standing of processes within cells, which provides a very different environment to what is considered in the
kinetic theory of gases.
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Table 4.1: Basic reactions and their mass action representation.

Reaction Syntax ODEs

S1
k−→ S2

˙[S1] = −k[S1]

[Ṡ2] = k[S1]

S1 + S2
k−→ S3

˙[S1] = −k[S1][S2]

[Ṡ2] = −k[S1][S2]

[Ṡ]3 = k[S1][S2]

S1 + lS2
k−→ S3

˙[S1] = −k[S1][S2]
l

[Ṡ2] = −kl[S1][S2]
l

[Ṡ3] = k[S1][S2]
l

S + S
k−→ . . . [Ṡ] = −2k[S]2

S1 + S2
k−→ S3 + S3 [Ṡ3] = 2k[S1][S2]

S1

k1−→←−−
k2

S2

˙[S1] = −k1[S1] + k2[S2]

[Ṡ2] = k1[S1]− k2[S2]

S1 + S2

k1−→←−−
k2

S3

˙[S1] = −k1[S1][S2] + k2[S3]

[Ṡ2] = −k1[S1][S2] + k2[S3]

[Ṡ3] = k1[S1][S2]− k2[S3]

∅ k−→ S [Ṡ] = k

S
k−→ ∅ [Ṡ] = −k[S]

subject to the assumptions and boundary conditions associated with the CME and which
are discussed in [vK92]. Note that each equation (4.25) describes the probability of a
state, for which there are many possibilities and hence many equations.

The previous sections introduced generalized mass action models and chemical master
equations by specific examples. Since for virtually all cases the CMEs, like (4.25), cannot
be solved analytically, a numerical simulation is required. The next section will look at one
popular approach to stochastic simulation. This will be followed by further investigations
into the differences between the mass action and CME approach.

4.5 Stochastic Simulation

In this section we introduce a generic framework for stochastic modelling based on chemical
master equations and for which an elegant simulation algorithm is available. Here the
simulation of a model is understood as an ‘execution of’ or ‘experiment with’ the model.
For mass action models, simulation refers to numerical integration. The simulation of a
stochastic model is the subject of Section 4.5.4.

In the stochastic approach, the state of the system at time t, is defined by the number state

of molecules of each chemical species Si:

S(t)
.
=
(
#S1(t), #S2(t), . . . , #Si(t), . . . , #SN (t)

)

≡ n ,

where n ∈ ZN
+ for each molecular species Si we use the superscript S(i) to index individual

molecules. In [Gil92b] Gillespie showed that for a chemically reacting system that is
well stirred and in thermal equilibrium, the chemical master equations are a realistic
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microphysical representation, i.e., one that models the collision of physical objects and
their velocities. The underlying assumptions that the reactants are in a fixed volume V
and in gas-phase, well mixed, and in thermal equilibrium (at a constant temperature)
may appear outrageous, considering the conditions in a cell, the models emerging from
this framework may nevertheless be useful. We are reminded of Box’s dictum “All models
are wrong but some are useful.”

The argument for the stochastic approach is that the evolution of the state (i.e., the
variations of the reactant populations) cannot be a purely deterministic process. The basis
for the stochastic approach is to set up and solve the chemical master equation. A system
is then described by the evolution of the function (see also page 37)

P
(
S1, . . . , SN ; t

)
= P

(
S(t)

)
≡ Pn(t)

which describes the probability that there will be #Si molecules of species Si at time t
in volume V . The behavior of an entire system of reactions is thus described by a set of
differential equations with probabilities as variables. Here we focus mostly on bimolecular
reactions

Rµ : S1 + S2 → S3 + . . .

where the collision of reactant species S1 and S2 (one molecule each) leads to a conversion
into one product species S3 etc. S1 and S2 are allowed to be the same. Reversible reactions
will be considered as two elementary reactions. For example, considering the enzyme
kinetic reaction (4.23)

E + S ←→ ES → E + P

can be decomposed into a set of three basic reactions Rµ, µ = 1, . . . , M = 3:

{ E + S
k1−→ ES

︸ ︷︷ ︸

R1

, ES
k2−→ S + E

︸ ︷︷ ︸

R2

, ES
k3−→ E + P

︸ ︷︷ ︸

R3

} .

Let Kµ denote the number of participating reactant species in a basic uni-directional
reaction channel Rµ, i.e., those on the left-hand side of the reaction diagram. Kµ is
called molecularity of reaction Rµ. In our example K1 = 2 (bimolecular), K2 = K3 = 1molecularity

(monomolecular). For a trimolecular reaction, for instance

2S + E → . . . ,

we have a multiplicity of reactant molecules involved in Rµ, which we denote by lµi, here
lµ1 = 2 and lµ2 = 1. lµi is also called stoichiometric coefficient of reactant Sj in reactionstoichiometric

Rµ. For the enzyme kinetic reaction l11 = l12 = l21 = l31 = 1. Finally, let Lµ denote the
number of reactant species such that the number of participating reactant molecules in a
reaction is

Kµ =

Lµ∑

j=1

lµj .

For the enzyme-kinetic reaction, L1 = 2, L2 = L3 = 1. If there are np(µ,j) molecules of
type Sp(µ,j), where index p(µ, j) selects those Si participating in Rµ, then the total number
of subsets, consisting of lµj reactants Sp(µ,j), in reaction channel Rµ, equals the binomial
coefficient

(
np(µ,j)

lµj

)

=
(np(µ,j))!

lµj !(np(µ,j) − lµj)!
=

1

lµj !

(

np(µ,j)(np(µ,j) − 1)× · · · × [np(µ,j) −
(
lµj − 1)

])

.



4.5. STOCHASTIC SIMULATION 85

Taking account for all reaction channel Rµ, we have the following expression for the number
of distinct combinations of Rµ reactant molecules:

hµ =







Lµ∏

j=1

(
np(µ,j)

lµj

)

for np(µ,j) > 0 ,

0 otherwise .

(4.26)

For example, let Rµ be defined as

2S1 + S2 + 3S3 → . . . ,

then Lµ = 3, lµ1 = 2, lµ2 = 1, and lµ3 = 3, such that

hµ =

Lµ∏

j=1

(
np(µ,j)

lµj

)

=

(
n1

2

)

·
(

n2

1

)

·
(

n3

3

)

.

The expression for hµ will be important in the following two sections, when we derive an
expression for the probability that a reaction Rµ, which is part of a more complex reaction
schema, will take place in dt. If np(µ,j) in (4.26) is large and lµj > 1, terms like (np(µ,j)−1)
, . . . , (np(µ,j) − lµj + 1) will not be much different from np(µ,j) and we may write

hµ
∼=

Lµ∏

j=1

(np(µ,j))
lµj

lµj !
=

Lµ∏

j=1
(np(µ,j))

lµj

Lµ∏

j=1
lµj !

. (4.27)

It should however be noted that this is an approximation, which can effect results in
studies that compare mass action models with lµj > 1 and stochastic simulations for small
molecular populations. In fact, as we are going to show, it is misleading to compare a
mass action model with stochastic simulation as alternatives.

4.5.1 Gillespie modelling

In most cases, the chemical master equation (2.25) is difficult or impossible to solve ana-
lytically. Gillespie developed subsequently in the 1970’s a stochastic simulation algorithm
[Gil77] and showed that the chemical master equation and the stochastic simulation are
derived from the same set of theorems, and they are therefore logically equivalent to each
other. Gillespie’s stochastic model, the consequence of the physical model of reactive col-
lisions (i.e., collisions which result in chemical alterations of the colliding molecules), is
an alternative to the ‘reaction rate’ k of the mass-action type models we introduced in
Section 3. In his approach, chemical reactions are characterized by a ‘reaction probability
per unit time’.

Asserting a stochastic rate constant cµ for reaction channel Rµ, which only depends stochastic rate constant

on the physical properties of the molecules and the temperature of the system,

cµdt is the probability that a particular selected combination of Rµ reac-
tant molecules at time t will react in the next infinitesimal time interval
(t, t + dt).

cµdt is the probability that a particular selected combination of Rµ reactant molecules
at time t will react in the next infinitesimal time interval (t, t + dt). A reaction requires
two separate phenomena: a collision to occur and for the collision to be reactive. In
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[Gil92b, Gil92a], for bimolecular reactions, Gillespie derived an expression for cµ that
contains a probability that a colliding pair of Rµ reactant molecules will chemically react.
This probability is generally unknown. For trimolecular reactions the only relationship
that can be derived from physical principles is the proportionality cµ ∝ V −Kµ+1, where
Kµ = 1, 2, or 3, and even this requires further unrealistic assumptions as Gillespie admits
in [Gil92a]. Since a physical derivation for cµ is in general not possible, implementations
of cµ in algorithms are relying on other arguments. Such a derivation will be introduced
later on. In [Gil92a] he also showed how the linear relationship cµdt is justified on a
mathematical basis. A consequence of this derivation is that cµ must be analytical4. This
can, for example, be achieved by keeping cµ constant. If we multiply the probability
cµdt, which applies to a particular selected combination of reactant molecules, by the
total number of distinct combinations of Rµ reactant molecules in V at time t, we obtain
the probability that an Rµ will occur somewhere inside V in the next infinitesimal time
interval (t, t + dt). This leads us to

cµ · hµ dt ≡ aµ dt

or
aµ = cµ · hµ (4.28)

and
Pµ(dt) = aµ dt . (4.29)

as the probability that an Rµ reaction will occur in V in (t, t + dt), given that the system
is in state S at time t. aµ is the propensity of the Rµ reaction. A propensity is thuspropensity

understood as probability per unit time. Before deriving an expression for the propensity
aµ that deals with general reaction schemas, let us have a look at some simple cases we
have dealt with before.

For the monomolecular reaction, S
k−→ . . ., in which only one molecule of S is required

for the reaction Rµ to take place, the propensity is simply

aµ = kµ(#S) . (4.30)

The probability of reaction Rµ to be realized in the infinitesimal time interval (t, t+ dt) is

Pµ(dt) = kµ(#S) dt .

Considering the formation of a complex,

S1 + S2
k−→ . . .

and labelling each molecule of Sp(µ,j) by S
(i)
p(µ,j), i = 1, 2, . . . , #Sp(µ,j), we have #S1 ·#S2

distinct copies of the reaction that can occur:

aµ = k(#S1)(#S2)

For the reversible reaction

S1 + S2

k1−→←−−
k2

S3 ,

we must split this into two separate reaction channels first:

R1 : S1 + S2
k1−→ S3 ,

R2 : S3
k2−→ S1 + S2 .

4A function is analytical if it has derivatives of all orders at any point.
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Considering the following chemical reaction network with reaction channels

R1 : S1 + S2 → S3 + S4 ,

R2 : 2S1 → S1 + S2 ,

R3 : S1 → S2 ,

the number of distinct Rµ molecular reactant combinations hµ for these channels are

h1 : #S1#S2 ,

h2 : #S1(#S1 − 1)/2 ,

h3 : #S1 .

Let νµj denote the change in the Sp(µ,j) molecular population caused by the occurrence of
one Rµ reaction. The νµj values for the reaction channels above are

ν11 = −1 , ν12 = −1 , ν13 = +1 , ν14 = +1 , all other ν1j = 0

ν21 = −1 , ν22 = +1 , all other ν2j = 0

ν31 = −1 , ν32 = +1 , all other ν3j = 0

In the next section we are going to derive a general expression for aµ, cµ, respectively,
which will enable us to simulate realizations of more complex reaction pathway diagrams.
Table 4.2 summarizes the stochastic parameters for basic reaction channels Rµ. Note that
even if the relationship between the stochastic rate constant cµ and the reaction rate k is
only a constant factor for these simple examples, the conceptual difference between the
stochastic and deterministic formulation is rather more complicated. The stochastic rate
constant cµ, multiplied by hµ, is a propensity and thus referring to a stochastic model of
a population of molecules. In contrast, the rate constants kµ are indeed rates in the sense
of a velocity. The fact that the cµ, and hence any stochastic simulation, is dependent on
knowledge of the rate constants of the mass action model is no coincidence. It has not
been feasible to derive an expression for cµ from physical principles without knowledge of
either the rate constants or the probabilities that a colliding set of Rµ reactant molecules
will chemically react. We are going to discuss these issues in the following sections in
greater detail.

4.5.2 Stochastic rate constant versus rate constant

In this section we summarize the relationship between the stochastic rate constant cµ and
the rate constant kµ in an ODE formulation of the mass-action law.

Let us start with a simple example. We are interpreting the rate constant, at the
molecular level, as the probability that a particular combination of reactants is realized
such that reaction Rµ will occur in the small unit time interval. For example, in Section
3, we were considering a reaction with only one reactant the number of ways a particular
combination of molecules can occur is just the number of molecules #S of reactant S. In
this monomolecular reaction (Kµ = 1) the reaction does actually not require collisions and
cµ is thus independent of the volume. For a bimolecular reaction, increasing the volume
(with the number of moles constant), reduces the likelihood of reactive collisions in a small
interval of time and hence cµ ∝ V −1. In general we can therefore write

cµ ∝ 1/V Kµ−1 . (4.31)

Using the following example for a chemical reaction

S1 + αS2
k1−→ βS3

k2−→ αS2 + γS4 ,
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Table 4.2: Stochastic rate constant cµ and number of distinct Rµ reactant combinations hµ

for elementary reaction channels Rµ.

Rµ cµ hµ

S1 + S2
k−→ S3 k/V #S1 ·#S2

S1 + S2
k−→ 2S1 k/V #S1 ·#S2

S1 + S2 + S3
k−→ S4 k/V 2 #S1 ·#S2 ·#S3

S1
k−→ . . . k #S1

2S1
k−→ S2

2!·k
V

1
2 ·#S1 · (#S1 − 1) =

(
#S1

2

)

2S1
k−→ S1 + S2

2!·k
V

1
2 ·#S1 · (#S1 − 1) =

(
#S1

2

)

3S1
k−→ S2

3!·k
V

1
6 ·#S1 · (#S1 − 1) · (#S1 − 2) =

(
#S1

3

)

l · S1
k−→ S2

l!·k
V l−1

(
#S1

l

)

S1 + 2S2
k−→ S3

2!·k
V 2 #S1 · 1

2 ·#S2 · (#S2 − 1) = #S1 ·
(
#S2

2

)

∅ → S 1 1

which is split into two reaction channels

R1 : S1 + αS2
k1−→ βS3 ,

R2 : βS3
k2−→ αS2 + γS4 .

(4.32)

When a reaction occurs, the changes to molecule populations are

ν1 = (−1,−α, β, 0) , ν2 = (0, α,−β, γ) .

From (4.32) and from the definition of reaction velocity we have the following reaction
rates [

[Ṡ1]

−1
=

[Ṡ2]

−α
=

[Ṡ3]

β

]

=k1[S1][S2]
α ,

[

[Ṡ3]

−β
=

[Ṡ2]

α
=

[Ṡ4]

γ

]

=k2[S3]
β .

(4.33)

The rate equations are then easily derived as

d[S1]/dt = −k1[S1][S2]
α

d[S2]/dt = −αk1[S1][S2]
α + αk2[S3]

β

d[S3]/dt = βk1[S1][S2]
α − βk2[S3]

β

d[S4]/dt = γk2[S3]
β .







(4.34)

Looking at the structure of (4.34), we recognize in this set of equations the GMA repre-
sentation (2.23). Substituting [S] = S/V = 〈#S〉/(NAV ) in (2.23), gives

d

dt

(〈#Si〉
NAV

)

=
M∑

µ=1

νµikµ

Lµ∏

j=1

(〈#Sp(µ,j)〉
NAV

)lµj

,

which can be rewritten as

d

dt
〈#Si〉 =

M∑

µ=1

νµikµ

(NAV )Kµ−1

Lµ∏

j=1

〈#Sp(µ,j)〉lµj , (4.35)
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where we made use of the fact that

Lµ∏

j=1

(NAV )lµj = (NAV )

Lµ∑

j=1

lµj

= (NAV )Kµ .

The differential operator is justified with the assumption of large numbers of molecules
involved, such that near continuous changes are observed5. Let us now assert for the
temporal evolution of 〈#Si〉 a “particle-ODE”, :

d

dt
〈#Si〉 =

M∑

µ=1

νµik
′
µ

Lµ∏

j=1

〈#Sp(µ,j)〉lµj . (4.36)

Comparing (4.36) with (4.35), we find

k′
µ =

kµ

(NAV )Kµ−1
, (4.37)

This equation then describes the interpretation of the rate constant, dependent on whether
we consider concentrations or counts of molecules.

To arrive at a general expression for the propensity aµ from (4.36) it follows that

〈#Rµ〉 = k′
µ ·

Lµ∏

j=1

〈#Sp(µ,j)〉lµjdt (4.38)

gives the average number of Rµ reactions occurring in (t, t + dt). Note that νµ has been
excluded above since we would otherwise have an expression for the number of molecules
not the number of reactions. Considering #Rµ, the number of Rµ reactions, as a discrete
random variable with probability mass function prµ = Prob{#Rµ =rµ}. The expectation
value 〈#Rµ〉 is given by

〈#Rµ〉 =
∑

rµ

rµ〈prµ〉 rµ = 0, 1, 2, . . . (4.39)

where

prµ =







aµdt + o(dt) : rµ = 1

1− aµdt + o(dt) : rµ = 0

o(dt) : rµ > 1 .

(4.40)

where o(dt) denotes a negligible probability for more than one Rµ reaction to occur during
dt. Since aµ is a function of n, prµ is randomly varying and hence the averaging 〈prµ〉 over
the ensemble in (4.39). Equation (4.39) thus becomes

〈#Rµ〉 = 0 · p0 + 1 · p1 +
∑

rµ>1

rµ〈prµ〉 .

From (4.39) and (4.40) we then have

〈#Rµ〉 = 〈aµdt〉+ o(dt) . (4.41)

Now, from (4.38) and (4.41) the propensity of Rµ reactions to occur in dt is given as

〈aµ〉 = k′
µ

Lµ∏

j=1

〈#Sp(µ,j)〉lµj . (4.42)

5Strictly speaking it is possible to take the differential, for a Heaviside step function the derivative is a
δ-function. This leads however to some complications which we do not wish to go into here.
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To proceed, we consider another alternative expression for aµ, by substituting (4.27)
into

aµ = hµ · cµ , µ = 1, . . . , M (4.43)

and considering the average

〈aµ〉 = cµ ·
〈

Lµ∏

j=1
(#Sp(µ,j))

lµj

Lµ∏

j=1
(lµj !)

〉

, (4.44)

where #Sp(µ,j) denotes the random variable whose value is np(µ,j). Note that this implied
the assumption of a large number of molecules for all species Si and lµj > 1. Comparing
(4.44) and (4.42)

k′
µ

Lµ∏

j=1

〈
#Sp(µ,j)

〉lµj =

cµ

〈
Lµ∏

j=1

(
#Sp(µ,j)

)lµj

〉

Lµ∏

j=1
(lµj !)

.

Making the same notorious assumption6 of zero covariance as in [Gil92a], gives

k′
µ =

cµ

Lµ∏

j=1
(lµj !)

, (4.45)

which can be turned into an expression for cµ:

cµ = k′
µ ·

Lµ∏

j=1

(lµj !) . (4.46)

Inserting (4.37) for k′
µ, we arrive at

cµ =

(

kµ

(NAV )Kµ−1

)

·
Lµ∏

j=1

(lµj !) . (4.47)

Equation (4.47) establishes a relationship between the stochastic constant cµ and rate
constant kµ and is used in most implementations of Gillespie’s algorithm. Note that if
above we substitute S/V in (2.23) for [S] instead of 〈#S〉/(NAV ), the only difference to
(4.37) and (4.47) is that the NA would not appear in these equations.

The difference of our derivation to the one given by Gillespie in [Gil92a] is that we
introduced the average number of reactions (4.38) to move from the general mass action
representation (2.23), which is independent of particular examples, to an expression that
allows us to derive parameter cµ of the stochastic simulation (4.47) without making ref-
erence to the temporal evolution of moments from the CME. In [Gil92a], the temporal
evolution of the mean is derived for examples of bi- and tri-molecular reactions only. Tak-
ing the variance of #S(t) to be zero to make it a ‘sure variable’, this equation is compared
to the mass action model to derive cµ.

6The assumption of zero covariance such that 〈#Si#Sj〉 = 〈#Si〉〈#Sj〉 means for i 6= j nullifying
correlation, and for i = j nullifying random fluctuations. The same assumption is required if one compares
the temporal evolution of the mean of the CME model with the mass action model. This then demonstrates
that a mass action model does not always arise as the mean of the CME model [Gil92a] (page 363). See
also page 80 in Section 4.3.
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Equation (4.47) is at the heart of the Gillespie algorithm and its implementations.
There are two conclusions from the derivation. First, using the approximation (4.27) for
hµ is valid for a large number of molecules with lµj > 1. Although in most practical cases
this will not lead to significant differences, this has been ignored by some authors. More
important however is the fact that the derivation of (4.47) relies on the rate constants
of the mass action model. In this respect, it does not make sense to compare a mass
action model and a stochastic simulation as alternatives if the stochastic rate constant cµ

is derived from the rate constants of the mass action model.

So how do we compare deterministic and stochastic models? First, we ought to compare
models with models and simulations with simulations. The advantage of the mass action
model (2.23) is that its terms and parameters have a precise meaning, they are a direct
translation of the biochemical reaction diagrams that capture the biochemical relationships
of the molecules involved. For a formal analysis of the model, as opposed to a simulation,
rate equations are in virtually all cases simpler than the CME. One might argue that
for any realistic pathway model a formal analysis is not feasible for either model and
a simulation (numerical solution) is the way to go forward. In this case the Gillespie
algorithm provides an efficient implementation to generate realizations of the CME. An
advantage of simulations is furthermore that, in principle, it is possible to vary temperature
and volume over time. One can imagine fluctuations in volume and temperature to be the
consequence of various physical processes in the cell. These variations may however also
serve a ‘purpose’, in which case we ought to consider them explicitly in our mathematical
models. If we are to consider random fluctuations in volume and temperature to matter,
this would lead to random fluctuations of the rate constants.

4.5.3 So are they, or are they not?

We are now briefly returning to a question asked in Section 3. We would like to understand
how the ODE representation and stochastic model compare and whether the ODE model
does emerge as the mean of the stochastic process. To see how we can arrive at the
law of mass action from stochastic modelling, consider the following set of reactions, also
considered as an example by Gillespie in [Gil92a]

B1 + S
c1−→←−−
c2

S + S and S + S
c3−→←−−
c4

B2 + B3

such that we get the following reaction channels Rµ:

R1 : B1 + S
c1−→ 2S

R2 : 2S
c2−→ B1 + S

R3 : 2S
c3−→ B2 + B3

R4 : B2 + B3
c4−→ 2S .

We assume that B1, B2, and B3 are buffered to allow for a univariate analysis of the process
S(t). We will for this part also simplify the notation and use n1 = #B1, n2 = #B2,
n3 = #B3, and ns = #S to denote counts of molecules. The changes or ‘jumps’ in
molecules in individual reaction channels R1, . . . , R4 are

ν1 = +1 , ν2 = −1 , ν3 = −2 , ν4 = +2

with propensities

a1 = c1n1ns , a2 = c2ns(ns − 1)/2 , a3 = c3ns(ns − 1)/2 , a4 = c4n2n3 .
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From the definition of Pµ(dt) = aµdt, we can write an expression for the mean change in
dt:

〈
#S(t + dt)−#S(t)

〉
=

〈
M∑

µ=1

νµPµ(dt)

︸ ︷︷ ︸

average over channels

〉

=

〈
M∑

µ=1

νµaµdt

〉

.

Note that in the right-hand term, aµ is a random variable, which means it has a distribution
and which therefore justifies the averaging 〈·〉. This leads us to

d

dt

〈
#S(t)

〉
=

〈
M∑

µ=1

νµaµ

〉

(4.48)

=
〈
(ν1a1 + ν2a2 + ν3a3 + ν4a4)

〉

= c1n1

〈
#S(t)

〉
−
(c2

2

) 〈
#S(t)(#S(t)− 1)

〉
− c3

〈
#S(t)(#S(t)− 1)

〉
+ 2c4n2n3 .

(4.49)

For this last equation, to be comparable to the ODE representation (4.36), it should only
contain expression in 〈#S(t)〉. For this to happen, we require two assumptions to be valid.
The first one is

〈
#S(t)(#S(t)− 1)

〉
=
〈
#S2(t)

〉
,

which holds true for a reasonably large #S(t). The next step would require

〈
#S2(t)

〉
=
〈
#S(t)

〉2
.

Looking at the definition of the variance of #S(t)

Var[#S(t)] =
〈
#S2(t)

〉
−
〈
#S(t)

〉2
,

we can get there by assuming the variance of random variable #S(t) is zero. Compare
this with the example in Section 4.3, where the same question, to whether the mass action
representation is the mean or expectation of the stochastic model, was only sensible by
assuming the dependent variables to be independent.

Gillespies’ work, for which a wealth of details are provided in [Gil92a], provides us with
a means to translate pathways, described in terms of mass-action laws, into a stochastic
representation. However, it does also provide a simple alternative to the chemical master
equations approach in stochastic modelling. In the following section we are going to discuss
an algorithm that allows us to simulate fairly complex pathways in a quite effective manner
using this framework.

4.5.4 The Gillespie Algorithm

Before Gillespie’s work, the traditional method of calculating the time evolution of a system
of chemically reacting molecules was to set up and solve the chemical master equation
of a system under consideration. The behavior of an entire system of reactions is thus
described by a set of differential equations with probabilities as variables. These equations
are difficult to solve and instead Gillespie suggested a simulation of single trajectories of
the system and then use statistics to estimate concentrations. The goal of stochastic
simulation is then to describe the evolution of the state vector S(t) from some given initial
state S(0). At each time step, the system is in exactly one state, and the two questions a
simulation algorithm has to answer are:

• Which reaction will occur next?
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• When does it occur?

Gillespie expresses the answer to questions above in form of the following ‘reaction prob-
ability density function’ P (µ, τ) defined by

P (µ, τ)dτ , the probability that reaction Rµ will occur in the infinitesimal
time interval (t + τ, t + τ + dτ), given the system is in state S(t) at time t.

Note that the density function P (µ, τ) is assumed to be proportional to dτ only. The
probability P (µ, τ)dτ is calculated as

P (µ, τ)dτ = P0(τ)Pµ(dτ) . (4.50)

Pµ(dτ) = aµdτ is the probability (4.29) that an Rµ reaction will occur in the time interval
(t + τ, t + τ + dτ). P0(τ) is the probability that, given state S(t) at time t, no reaction
will occur in the interval (t, t + τ). The probability that any of the M reactions occurs in
the interval is

M∑

µ=1

aµdτ .

Let us simplify the notation by setting

a∗ =
M∑

µ=1

aµ .

The probability that no reactions occur in the interval dτ is thus 1− a∗dτ and therefore

P0(τ + dτ) = P0(τ) · (1− a∗dτ) ,

which can be rearranged into a differential equation

dP0

dτ
= −a∗P0 ,

for which the solution is given by

P0(τ) = e−a∗τ , (4.51)

satisfying the initial condition P0(0) = 1, i.e., the probability of nothing happening in zero
time is one. Inserting (4.51) for P0(τ) into (4.50)

P (µ, τ)dτ = aµe−a∗τdτ , (4.52)

or equivalently
P (µ, τ) = aµe−a∗τ .

where µ = 1, . . . , M and 0 ≤ τ < ∞. This joint distribution can also be viewed as a
µ-indexed family of continuous density functions

Pµ(τ) = hµcµe−a∗τ .

This is interpreted as the probability that at time t the reaction Rµ occurs in interval
(t+τ, t+τ+dτ) and no reaction occurred in the previous interval. Fixing µ, the probability
Pµ(τ) follows an exponential distribution, beginning for τ = 0 at height hµcµ. Among all
reactions, the most probable (or “first”) reaction µ is determined according to which
distribution Pµ(τ) has, in the interval τ + dτ , the largest area below the density function.
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S(t)

S(t + τ)

S(t + τ + dτ)
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Fig. 4.3: Illustration for Equation (4.53).

From the joint distribution one obtains the probability that the next reaction of any
type will occur in the interval (t + τ, t + τ + dτ) by integrating (4.50) over all reactions:

P (1)(τ)dτ =
M∑

µ=1

P (µ, τ)dτ = a∗e−a∗τdτ . (4.53)

Note that equation (4.53) gives a probability, but for a time interval (t+ τ, t+ τ +dτ),
where the exact point for the jumps in the molecule populations to occur is not specified
and hence dτ is assumed to be negligible (see Figure 4.3). This will then give us a means
to generate single-valued time point for the next reaction to occur. The probability that,
given that a reaction occurs in τ , the reaction is of type µ is the conditional probability
P (µ|τ). From the definition of a conditional probability

P (2)(µ|τ) =
P (µ, τ)

P (τ)
=

aµe−a∗τ

a∗e−a∗τ
=

aµ

a∗
.

We thus have two probabilities, P (2) and P (1), for what reaction is to occur next and
when this it is to happen. For a simulation, this has to be turned into an algorithm. Let
us first determine the time to the next reaction. The probability density function (pdf)
for this time was

P (1)(τ) = a∗e−a∗τ

with the corresponding cumulative distribution function defined by

F (t) =

∫ t

−∞

P (1)(τ)dτ = a∗
∫ t

0
e−a∗τdτ = 1− e−a∗t .

Suppose we use a random number generator to generate a number r1 in the unit interval.
If we choose a value t such that F (t) = r1, the pdf of t will be the one for P (1). The
random value of t can thus be obtained as

t = F−1(r1) =
1

a∗
ln

(
1

1− r1

)

.

Since r1 is uniformly distributed in the unit interval, so is 1−r1 and we may replace 1−r1

by r1 to obtain a random value for the time τ to the next reaction:

τ =
1

a∗
ln

(
1

r1

)

= − 1

a∗
ln r1 .



4.5. STOCHASTIC SIMULATION 95

Fig. 4.4: Gillespie’s Direct Methods for exact stochastic simulation.

Step 1. Initialization:

• Set t = 0. Fix initial numbers of molecules #Si(0).

• Initialize random number generator.

Step 2. Calculate the propensity functions

• aµ = hµ · cµ for µ = 1, . . . , M .

• Calculate a∗ =
∑M

µ=1 aµ

Step 3. Draw two random numbers r1, r2 from a uniform distribution in the unit
interval.

• Determine τ = (1/a∗) ln(1/r1).

• Determine µ such that
∑µ−1

j=1 aj ≤ r2 · a∗ <
∑µ

j=1 aj .

Step 4. Update

• the number of molecules #Si according to the reaction schema of Rµ.

• Put t = t + τ .

• Go to Step 2.

Finally, the type of reaction is determined by generating a second random number r2 in
the unit interval. Then the type of reaction that occurs at time τ corresponds to that
value of µ which satisfies the inequality

µ−1
∑

j=1

aj

a∗
≤ r2 <

µ
∑

j=1

aj

a∗
.

Gillespie introduced two equivalent simulation algorithms, called ‘Direct Method’ (see
Fig.4.4) and ‘First Reaction Method’. These have been improved by others, including
M.A.Gibson [GB00] who developed the ‘Next Reaction Method’. The differences between
these algorithms have to do with the implementation and computational aspects, the basic
idea how molecular interactions are represented is the same. Examples for stochastic
simulations will be provided in subsequent sections.

4.5.5 Examples

We here briefly recall a couple of examples for the Gillespie algorithm presented in [Gil77].
These are for illustration purposes only. We are going to discuss the roots of stochastic
modelling and simulation further in the remaining sections of this chapter.

The trivial example of an irreversible isomerization, equivalent to reactive decay is the
reaction

S1
k−→ S2 .

This has been solved analytically at the beginning of this chapter. Here the stochastic
mean is indeed equal to the solution of the ODE model and as shown in Figure 4.6.
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function [tt,nn,aa] = gillespie(pars)

% MATLAB (function) M-file implementing the Gillespie Algorithm.

n0 = pars{7}; % initial number of molecules.

nu = pars{9}; % changes in molecules.

tf = pars{10}; % end time for simulation.

rand(’state’,sum(100*clock)) % reset random number generator

t = 0; % intialize time to zero

n = n0; % initialize state

tt = 0; nn = n0; aa = propensity(n0,pars); while t < tf

% Compute propensities for all reaction channels:

a = propensity(n,pars);

astr = sum(a); % sum propensities over reaction channels

if ~astr

t = tf;

else

tau = exprnd(inv(astr)); % time to next reaction

% Next reaction Ru:

mu = min( find( cumsum(a) > astr*rand ) );

t = t + tau; % update t

n = n + nu(mu,:); % update n

end

tt = [ tt; t ]; nn = [ nn; n ]; aa = [aa; a];

end tt(end) = tf; nn(end) = nn(end - 1); aa(end) = aa(end - 1);

function a = propensity(n,pars)

% Subfunction for the computation of propensities

c = pars{3}; M = pars{4}; p = pars{5}; l = pars{6}; for mu=1:M

if n(p{mu})

h(mu) = prod(matnchoosek(n(p{mu}),l{mu}));

else

h(mu) = 0;

end

end

a = c.*h; % propensities

function c = matnchoosek(n,k)

% Subfunction that realizes a matrix version of nchoosek(.)

if any( [n k] <= 0 )

error(’matnchoosek takes positive inputs’)

end m = n(:); k = k(:); M = length(m); for i = 1:M

c(i) = nchoosek(m(i),k(i)) ;

end c = reshape(c,size(n));

Fig. 4.5: Matlab implementation of Gillespie’s Direct Method for stochastic simulation of
the chemical master equation.
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Fig. 4.6: Single run of a stochastic simulation (solid line) and solution of the mass action
model for a simple irreversible isomerization reaction. The similarity is due to the fact
that a large number of molecules are considered and because for a monomolecular reaction,
the stochastic mean is exactly the same as the solution of the mass action model. Here
c = k = 0.5.
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Fig. 4.7: The plot shows the average over two runs of the stochastic simulation for Example
4.54 with parameters k1 = 0.005, k2 = 0.005. The simulations show that the system is stable
for different initial conditions, i.e., beginning with only 10 molecules or beginning with 3000
molecules. In either case the average over two runs is near identical to the solution of the
mass action model.

For the next example, consider a molecular species that remains constant, denoted by
the letter C

C + S1
k1−→ 2S1 , 2S1

k2−→ S2 (4.54)

The assumption of constancy can often be made for large pools, or at least for a certain
period of time. The simulations in Figure 4.7 show that the system is stable for different
initial conditions, i.e., beginning with only 10 molecules or beginning with 3000 molecules.
In either case the average over two runs is near identical to the solution of the mass action
model. Gillespie demonstrated with this example that stochastic simulation provides a
rapid way of testing a hypotheses, which for analytical solutions can often be cumbersome.
He disproved a claim from the literature that the stochastic model can become unstable.
Interestingly Gillespie makes even an argument for saving money with his simulation
technique. Thirty years later, for all of these examples it is not necessary to worry about
computing time.
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Fig. 4.8: Stochastic simulation for the Lotka-Volterra equations 4.55. Left: average of 5 runs
for the temporal evolution of the populations of S1 (“prey”) and S2 (“predator”). Note how
the predator lags behind the prey. The phase portrait is shown on the right.

The Volterra model of two nonlinear coupled differential equations,

dS1

dt
= k1AS1 − k2S1S2

dS2

dt
= k2S1S2 − k3S2 ,

is widely used for an introduction to nonlinear differential equations. In these equations is
S1 interpreted as the ‘prey’ and S2 as the ‘predator’, A as the constant supply of food for
the prey. This model can be interpreted as a set of coupled autocatalytic Lotka reactions

R1 : A + S1
k1−→ 2S1 ,

R2 : S1 + S2
k2−→ 2S2 ,

R3 : S2
k3−→ B ,

(4.55)

where the last reaction represents the ‘death rate’ of S2. The birth-death master equation
for this system was already derived in Section 4.3. A steady state of the system is reached
for

dS1

dt
=

dS2

dt
= 0 ,

which is attained for

S1 =
k3

k2
and S2 = k1

A

k2
.

For the simulation of these equations, we choose k1A = 10, k2 = 0.01, k3 = 10. For initial
conditions, S1(0) = S2(0) = A = 1000, and an average of five runs, Figure 4.8 shows
that for a stochastic simulation it may in principle be possible for the populations to get
extinct. In the deterministic case, the system would describe well defined orbits around a
fixed point and for small perturbations the system would recover and return to a stable
oscillatory pattern. In the stochastic simulation, the amplitudes of the oscillations are
quite variable, while the frequency and phase shift remain relatively stable.

While previous simulations assumed that food A changed insignificantly and thus could
be assumed constant, we now consider the case in which A(t) is depleted. For every time
an R1 reaction occurs, the population of A is reduced by one. As long as there is food,
i.e., A(t) > 1, the prey can increase its population. However, as the food is depleted,
even in the absence of predators the prey population will be diminished. In the absence of
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Fig. 4.9: Stochastic simulation of the Lotka-Volterra system in which the food supply is
depleted. The initial condition for A is A(0) = 100000, k1 = 0.0002, k2 = 0.01, k3 = 10.
Right: the same system but now S1 can also die of ‘natural causes’ at a rate of k4 = 10.
Shown are in all cases an average of five runs.

prey, the predators have the same fate. The previous situation in which there is an infinite
supply of food is sometimes referred to an ‘open system’ in which there is an outside
supply. To let A deplete would then correspond to a closure of the system. Figure 4.9
shows two simulations, in both cases the food is depleted, in the right plot the prey, S1,
can also die of ‘natural causes’, which is realized through an additional reaction channel
R4 : S1 → B.
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Fig. 4.10: Stochastic simulation of the Brusselator.

The following set of reactions, demonstrate that it is possible to obtain a stable chem-
ical oscillator, sometimes referred to as the Brusselator :

A
k1−→ S1

B + S1
k2−→ S2 + C

2S1 + S2
k3−→ 3S1

S1
k4−→ D .

The corresponding rate equations are

d

dt
S1 = k1A− k2BS1 +

k3

2
S2

1S2 − k4S1 ,

d

dt
S2 = k2BS1 −

k3

2
S2

1S2 .
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The steady state values for dS1/dt = dS2/dt = 0 are k1A/k4 for S1 and 2k2Bk4/k1Ak3

for S2, respectively. Figure 4.10 and 4.11 show the stochastic simulation with A = S1(0),
B = S2(0), h1 = S1, h2 = BS1, h3 = S2S1(S1 − 1)/2, and h4 = S1 and for k1A = 5000,
k2B = 50, k3 = 0.00005, k4 = 5. Since for such large number of molecules a single
realization is virtually identical to an average of realizations, the simulation was run only
once. The initial conditions were set to S1(0) = 1000 and S2(0) = 2000. The two molecule
populations clearly do not remain at their stationary values and instead immediately move
into an oscillatory mode. Gillespie put the cost of these figures at 60 dollars. The phase
diagram in Figure 4.11 shows that the system is unable to trace its route exactly in each
cycle.
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Fig. 4.11: Stochastic simulation of the Brusselator: phase diagram

The final example is referred to as the Oregonator, with the following set of reactions:

A + S2
k1−→ S1

S1 + S2
k2−→ B

C + S1
k3−→ 2S1 + S3

2S1
k4−→ D

E + S3
k5−→ S2 .

Figure 4.12 to 4.13 show the simulation results for S1(0) = 500, S2(0) = 1000, S3(0) =
2000.

4.5.6 Molecules as individuals

In the previously discussed approaches, identical or similar molecules are grouped. Treat-
ing each molecule individually, it should be possible to have a more refined characterization
of proteins (e.g. conformational changes, covalent modification, ligand binding, phospho-
rylation, methylation), allowing for a more detailed description of their catalytic activity,
binding affinity and so on. Each internal state of a protein may therefore lead to differ-
ent reactive properties (and probabilities). Another advantage of a ‘multi-state molecular
representation’ is that positional information could be added and the fate of an individual
molecule could be traced.

In modelling groups of protein molecules we could introduce new variables for different
internal states of the same protein.
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Fig. 4.12: Stochastic simulation of the Oregonator, showing the average of two runs for
parameters S1(0) = 500, S2(0) = 1000, S3(0) = 2000.
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Fig. 4.13: Phase diagram for the stochastic simulation of the Oregonator.

In STOCHSIM [LNS01] the enzyme kinetic reaction (4.23) would be simulated as
follows. For a compartment containing four enzyme and four substrate molecules, and
two product molecules, in the first step two molecules are chosen randomly. Say one S
and one P , referring to a look-up table the probability for a reaction of these to molecules
to occur is read off. If the probability exceeds a random number, the molecules will not
react. If they do, a product is formed.

4.6 An ODE to Differential Equations

The stochastic models, derived in Section 3 were considering pools or populations of
molecules and in deriving the model we made the assumption of a very small ∆t. For
decreasing numbers of molecules, and with a constant volume, fewer reactions will oc-
cur and a simulation of these stochastic models are bound to suffer accuracy. The basic
assertion of the Gillespie stochastic simulation algorithm is that the probability for the
reaction Rµ to occur within the small time interval (t, t + dt) is equal to aµ · dt where
aµ is a factor that may depend on temperature, volume, current number of reactants. In
principle, we could therefore vary aµ during the simulation, something that would have
been rather difficult for the stochastic models derived in Section 3. However, most com-
monly we take as the basis for the application of the Gillespie algorithm that within a
compartment of fixed volume V we have a constant temperature, and moreover that all
molecules have equal access to all others, they are well mixed and randomly distributed
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within the compartment space. A well-mixed system, means that molecules are homoge-
nously distributed in V . This allows us to determine the probability that the center of
any randomly selected molecule will be found to lie inside a subregion of volume δV as
equal to ∆V/V . The position of a molecule is therefore uniformly distributed across the
compartment of volume V . For this approach to make sense, one relies on the occurrence
of many non-reactive molecular collisions to “stir” the system between successive reactive
collisions. And because nonreactive collisions occur far more often, and thus the system
can be described simply by the number of each kind of molecule. In other words, in the
Gillespie approach to stochastic simulation we do not describe or trace molecules individ-
ually but group molecular species Si and describe them by their number of molecules #Si

in V . This has been occasionally used as an argument in favor of agent-based simulations.
One should however note that for any realistic system there will always be pools of iden-
tical molecules or molecules in the same state and one way or another this will lead to
aggregate descriptions.
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Fig. 4.14: Single run of a stochastic simulation using Gillespie’s Direct Method [Gil77] for
Example (4.32) in the text. The parameters used are V = 1 pL, k1 = 0.5 (nM · sec)−1,
k2 = 0.2 sec−1, α = 1, β = 1, γ = 1, #S4(0) = #S3(0) = 0.

As the number of molecules becomes small, the variability of molecular populations in
biochemical reaction networks increases. It is frequently argued that in this case differential
equation models do not account for the observed variability and a stochastic approach
should be preferred. To account for variability in chemical master equations (2.25) and
rate equations (2.23), for both conceptual frameworks the identification of the model and
its parameters requires a set of replicate experimental time series over which to average and
estimate the moments of the distributions that account for the variability. While there are
indeed good reasons to hypothesize stochastic mechanisms in intra-cellular dynamics (see
[Pau04] for a recent overview and discussion), the arguments used for stochastic simulation
and against differential equations are often misguided.

One ought to differentiate between a hypothesized principle or molecular mechanism
and the observations we make from experimental data. While rate equations are determin-
istic in the sense that they employ differential equations, they are based on a probabilistic
description of molecular kinetics. On the other hand, the chemical master equation is a
stochastic formulation, but based on differential equations, with probabilities as variables.
The Gillespie algorithm realizes the chemical master equation but for most applications
users of this algorithm make explicit use of the rate constants that define the generalized
mass action model. In this situation it would then seem hypocritic to argue against mass
action models as if it would their application be a great mistake. Note that this is not to
mean that the CME approach relies on the mass action model, since to derive rather than
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Fig. 4.15: Average over four realizations of a stochastic simulation of Example (4.32), using
the same parameters as in Figure 4.14. The solutions of the mass action model have been
multiplied by NA · V · 10−9 to convert concentrations into a count of molecules.

postulate a rate equation, one must first postulate a stochastic mechanism from which the
mass action model arises as a limit.

The Gillespie algorithm is an exact realization of a time-continuous Markov process.
This is true regardless of how these processes are motivated physically, and one should not
mistake this as an argument how well it can describe intracellular dynamics. Many of the
assumptions regarding volume, temperature, homogenous culture etc., are not avoided by
this fact. For many applications or examples in the literature the number of molecules
is large enough to make a single stochastic realization appear to be an exact copy of
the solution of the mass action model. In the context of a discussion of low molecular
concentrations, one should not forget that, for fewer molecules, it is necessary to obtain
a series of realizations over which we have to average before we get an ‘accurate’ of the
properties of a stochastic system from either experimental data or simulations.
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Fig. 4.16: Example (4.32). Temporal evolution of the aµ. The parameters are the same as
in Figure 4.14. What is shown is an average of the aµ over realizations in order to illustrate
the overall trend, free of the variability in single realizations.

A common argument is that if the concentration or the number of molecules of the
chemical species involved in a biochemical reaction is low, a stochastic approach in form
of the chemical master equation is a more accurate representation than rate equations
[ELS01, vGK01, Kie02, XW03]. In case of [vGK01, Kie02] and [XW03] this discussion is
not done on the basis of the chemical master equation but using the Gillespie algorithm
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for stochastic simulation. A question is what is meant by “low concentrations” or the
consequences of small numbers of molecules? In [vGK01] a figure of the order of less than
a few thousand is given. In [ELS01] the copy number of proteins is cited as less than a
hundred. Since the number of molecules for most reactant species reduces either to very
small values or increases steadily for others, we assume that authors, speaking of ‘numbers
of molecules’ refer to initial numbers at time zero. Subject to approximation (4.27), Figures
4.14 and 4.15 compare realizations of the stochastic simulation of Example (4.32) with
solutions of the rate equations. Figure 4.16 shows the temporal evolution of aµ for a volume
of 1 pL and initial numbers of 10 molecules. The simulations demonstrate that even for
very small numbers of molecules single realizations of stochastic simulations show steadily
changing patterns that can be modelled well using a continuous representation. The close
similarity between the numerical solution of the ODEs and the stochastic simulation is
no surprise since the rate constants of the mass action model are also integral part of the
stochastic simulation, as shown by equation (4.47).
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Fig. 4.17: Data from western blot time course experiments.

In fact, plots shown in those publications that argue for stochastic simulation in case
of small molecule populations, are almost always displaying steady increases and decreases
that are well approximated by ordinary differential equations. Figure 4.17 shows typical
experimental data as obtained from western blot time course experiments to study pro-
teins in signal transduction pathways. While there surely is measurement noise, it seems a
reasonable assumption to believe the concentration profiles follow roughly the linear inter-
polations shown. If for the few time points that current experimental practice generates,
we were not observing steadily increasing or decreasing pattern, and instead would argue
for a truly random process, we would have a hard time to validate such a model from data
like those shown in Figure 4.17. Figure 4.18 shows random simulations of time series with
only six time points. How do we distinguish between random from deterministic pattern
in data?

Western-blot time series, like those shown in Figure 4.17, are generated from a pool
of about 107 cells although we are trying to understand what is happening in a cell. We
could explain the deterministic pattern in experimental data as follows. Looking at the
population of molecules of species Si, from each reaction channel a change νµi arises for
when the reaction channel Rµ is realized or active. The change νµi is a random variable,
and the total change of Si across all reaction channels is a sum of random variables

∆(#Si) =
M∑

µ=1

νµi .
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Fig. 4.18: Random simulations of time series. We can only start modelling by assuming that
these curves are not random. If they are, we could not test this since there are not enough
data points for a statistical test to be applicable. We call this the WYSIWYM principle:
What You See Is What You Model!

For more than one reaction channel, from the central limit theorem, ∆(#Si) is approx-
imately normal distributed, ∆(#Si) ∼ N (·, σ2

v). For any further averaging process with
say m elements, e.g., using 107 cells in immunoblotting, the variance of measurements is of
the order σ2

v/m. This means that if we are not considering single-cell measurements we are
likely to observe relatively smooth patterns. If we do consider single-cell measurements,
we ought to have in any case replicates to average out random variations.

If we are to consider a stochastic simulation and wish to validate it with experimental
data, we get the following requirements for the experimenters. In Gillespie’s algorithm,
the time interval for the next reaction to occur is calculated as

τ = (1/a∗) · ln(1/r1) ,

where r1 is a random number in the unit interval and

a∗ =
M∑

µ

aµ . (4.56)

Note that τ is a function of state n and thus implicitly also a function of time. As #Si

goes down, there are fewer reactive collisions and the propensity aµ decreases. This means
that for all relevant reaction channels, (4.56) will also decrease. This does however mean
that the ratio aµ/a∗ changes little. Since the probability of the next reaction occurring is
given by[Gil76]

P (µ|τ) = aµ/a∗ , (4.57)

this means that the resulting concentration levels are relatively similar. However, since τ ,
i.e., the time for the next reaction to occur is exponentially distributed,

P (τ) = a∗ · exp(−a∗τ) , (4.58)

with mean 1/a∗ and standard deviation 1/a∗, the variance of τ increases more substan-
tially. This in turn means, that for a specified t the variance of the realizations will
increase. Figure 4.19 illustrates the dependence of the variability on the initial number
of molecules. A consequence is that for fewer molecules, more realizations are required
to obtain an accurate picture through averaging across realizations. Also, the larger the
number of reaction channels, M , the smaller is the average time to the next reaction τ ,
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Fig. 4.19: Example (4.32). Temporal evolution of the normalized standard deviation
σSi(t)/(#S1(0)) over 50 realizations at t. α = β = γ = 1, k1 = 0.6 (nM · sec)−1,
k2 = 0.1 sec−1. #S4(0) = 10, #S2(0) = #S3(0) = 0, #S1(0) = 10, 20, 40, 80. Note
that the normalization is necessary to make the plots independent of the initial #Si and
thereby make them comparable.

as shown by (4.58). However, at the same time, the number of possible transitions from
state n will increase as can be seen from (4.57).

In considering mathematical modelling and simulation, most important are the context
and the purpose of modelling. Do we wish to use a model to hypothesize a fundamen-
tal molecular mechanism, or are we trying to model the observed consequences of these
molecular mechanisms? Is the phenomena we observe an aggregate of a group of depen-
dent subcomponents (e.g. molecules or cells) that combine individual, discrete responses
into graded response at higher levels of organization (e.g. in tissue and organs)?

In some cases, authors who wished to argue for their use of stochastic simulation, have
unfortunately missed some of the subtleties of our foregoing discussion. Let us look at
some examples. In [Kie02] it is argued that

“The availability of a huge amount of molecular data concerning various bio-
chemical reactions provoked numerous attempts to study the dynamics of cel-
lular processes by means of kinetic models and computer simulations.”

To take western-blot time course experiments as an example, the problem we face for
modelling is anything but one of dealing with huge amounts of data. For a time series,
usually only six to ten time points are available and replicates are the subject of hard fought
negotiations between theoreticians and experimentalists. For realistic pathway models,
because of the costs and time required, usually only a fraction of all pathway proteins can
be covered by experiments. While the area of bioinformatics is often associated with a
flood of data, in systems biology the lack of sufficiently rich quantitative stimulus-response
time course data sets remains a problem.

The authors of [XW03] clearly missed the mark:

“There is also a problem of interpretation by users. Systems of differential
equations have a number of parameters that must be fitted from experimental
data. However, the parameters may have no meaning to the biologists, who
are therefore unable to gauge whether the values are appropriate.”

Quite the opposite is true. The parameters of mass action model (2.23) have a very
precise meaning, which can be fitted from experimental data. We would argue the fact
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that, for mass action models, we can identify parameters directly from experimental data
is an advantage. Although this is not a trivial task, there are well established algorithms
available for this purpose. Why would the authors of [XW03] think the CME (2.25) is
more intuitive, and how would they validate their models?

Whether one starts with the mass action representation or the CME, it is often not
possible to obtain all necessary parameter values from experimental data. For such prac-
tical reasons but also in order to simplify the mathematical analysis it is often desirable
to make use of the quasi-steady-state assumption (QSSA) [SM97, Seg84]. The QSSA
implies that for the time scale of interest the instantaneous rates of change of interme-
diate species are approximately equal to zero. Modelling signal transduction pathways,
the consecutive activation of kinases is commonly described through phosphorylation and
dephosphorylation steps, equivalent to enzyme kinetic reactions. Assuming the concentra-
tion of kinase-substrate complexes is small compared with the total concentration of the
reactants, phosphorylation is modelled as a bimolecular reaction and assuming that the
concentration of active phosphatase is constant, dephosphorylation can be modelled as a
first order reaction. Such assumptions allow a formal analysis of various important aspects
of cell signalling rooted in mass action models. See [HNR02] for an outstanding example of
such an analysis. These simplifications do of course also simplify the stochastic simulation
since the k’s of the rate constants are implicitly used in the simulation. Alternatively, one
considers the QSSA for the CME as discussed in [RA03].

A natural system may be inherently deterministic or random, whether we are going to
use a stochastic model or a deterministic one is depending on various factors. To identify
differential equations as a deterministic model is only partly true since a stochastic model
(derived from the chemical master equation) is also a set of differential equations (with
probabilities as variables). How easy it is to fall into a trap, is illustrated by the textbook
example of a queue, e.g., the arrival of customers at a check-out desk. Every textbook
introduces this as a prototypical example of a random process, modelled by a Poisson
stochastic process. This is usually the right way to look at this problem and no-one would
think of modelling this with differential equations. But like in studying biological systems,
it depends on what (and how) we are looking at this process - under similar conditions
a day at the check-out counter will show an expected (predictable) peak at lunch time
and shortly after office hours, with longer intervals between arrivals. A Poisson process
comes with an assumption about the constancy of the rate at which people arrive and it is
the modeller’s responsibility to ensure that this assumption is valid in the given context.
Constant volume, temperature, rapid diffusion etc. were all assumptions we made in the
previous section. Furthermore, in the modelling framework, the Markov assumption is
justified for hard spheres colliding, i.e., collision time is minimal such that collisions are
independent. None of these assumptions necessarily leads to a wrong model, and it would
seem that systems biology is the art of making the right assumptions.

Systems of nonlinear ODEs can be numerically difficult to solve, for example, if there
are widely ranging reaction rates in a pathway. It is also true that even for simple pathways
we cannot expect to obtain a closed form solution7 for the set of ODEs that represent the
system. With a wealth of knowledge about differential equations, there may at least be
a chance for a study of general properties of the system without knowing its parameters
exactly. There is scope for further research into phase plane and bifurcation analysis for
pathway representations. Such analytic results are particularly important in light of the
difficulties one has in obtaining sufficiently rich and accurate experimental data sets for a
particular system under consideration.

The question of whether one should use ordinary differential equations or stochastic

7A closed solution of an ordinary differential equation is an expression that is composed of a finite
number of “elementary” functions.
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processes, raises interesting questions regarding the purpose of modelling. The principal
aim of (mathematical) modelling is to represent available knowledge about system vari-
ables. The process of model building is then an essential part of the ‘understanding’ of the
real world. The model is used to validate and generate hypotheses at the same time. This
is done by ‘prediction’, in a sense that the model shows a behavior that either confirms
available knowledge or the mismatch with observations suggests the need to revise the
existing understanding.

In engineering, models that are composed of differential equations are often referred to
‘physical models’ since the equations are a direct representation of the physical laws that
characterize the process under consideration. The structure of the model (the variables
involved and how their are related) is then often directly interpretable in terms of the
physical properties of the system. For complex technical systems, a common approach is
to identify so called ‘black-box models’ from experimental data. System identification, a
well established discipline within control engineering, and time series analysis provide a
vast collection of tools for this purpose. In this context, a model is validated by means of is
prediction error, the aggregated difference between predicted and real output values. The
internal structure of the model and its interpretation is usually of less interest. In systems
biology we are aiming for a representation of ‘biological reality’. However, while aiming
for physical or chemical realism in modelling, our choice for a mathematical representation
should be guided by experimental considerations (what we can measure) and the need to
limit the complexity of models, simulations or simply to reduce the effort in building a
model.

Mathematical models deal with concepts, they are not direct reflections of reality. The
model is constructed as to correspond in some useful sense to the real world, whatever
that may mean. This correspondence is approximate, and there is no conflict between a
deterministic model and a stochastic representation if we agree that mathematical models
are not concerned with what is true but only with what can be observed.

4.7 A never ending story

In this section we continue the discussion of a suitable conceptual framework in which
represent intracellular dynamics. We focus on a simple process that can have various
practical interpretations. The development of the stochastic model and a study of its
properties gives us an opportunity to learn more useful mathematical modelling techniques.

We are considering a molecule or molecular component like a channel or gate, whichchannelling

has a switch-like function, i.e., changes between two states, say ‘open’ and ‘closed’. Al-
ternatively, we may think of an isomerization reaction in which a molecule changes itsisomerization reaction

confirmation

closed (c)
k1−→←−−
k2

open (o) alternatively Sc

k1−→←−−
k2

So (4.59)

Focussing initially on one channel or molecule, we write Po(t) for the probability that the
channel is open at time t or the molecule is in state o, respectively. Let us assume the
channel is closed at time t, the probability that is opens during the interval (t, t + ∆t)
is defined as Po(t + ∆t) = k1∆t. Multiplying this probability with Pc(t) gives us the
probability that the transition c→ o will actually occur:

Prob{c→ o} = k1∆tPc(t) .
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We can then summarize our knowledge of the behavior as follows

Po(t + ∆t) = Po(t) + k1∆tPo(t)− k2∆tPc(t) ,

Pc(t + ∆t) = Pc(t)− k1∆tPc(t) + k2∆tPo(t) .

Moving Po(t) and Pc(t) to the left-hand-side and dividing by ∆t we get

Po(t + ∆t)− Po(t)

∆t
= k1Po(t)− k2Pc(t) ,

Pc(t + ∆t)− Pc(t)

∆t
= −k1Pc(t) + k2Po(t) .

Since the system can only be in either state, Pc(t) + Po(t) = 1 and we thus can describe
the system with one equation

dPo(t)

dt
= k1

(
1− Po(t)

)
− k2Po(t) .

Identifying the system as a two-state Markov process, transition probability matrix is given
by

Π =

[
Prob{c→ c} Prob{o→ c}
Prob{c→ o} Prob{o→ o}

]

=

[
1− k1∆t k2∆t

k1∆t 1− k2∆t

]

.

such that
PS(t + ∆t) = ΠPS(t) .

This birth-death process is a homogenous continuous-time, discrete-state Markov process. birth-death Markov
processIt is homogenous w.r.t. time, since the transition probabilities do not explicitly depend on

time, although they are implicitly depending on time through the number of molecules.

Next we extend this model of one channel or molecule to a collection of n independent
molecules and to simplify notation, let Pc(t) and Po(t) denote the probability of #Sc

.
=

c molecules in state ‘closed’ and #So
.
= o molecules in state ‘open’. Or, in terms of

populations, Pc(t), denotes is the probability of c molecules of species Sc and Po(t) gives
the probability of o molecules of species So. Since n is given, we can focus on either o
or c and derive the other from the fact that the total population is given by nT = c + o.
Considering the time interval (t, t + ∆t), where ∆t is small enough to allow only one
molecule to make the transition o → c, there are four events that can determine, Pc(t),
the probability of c molecules of type Sc during (t, t + ∆t):

Prob{c→ c− 1} = k1c∆tPc(t) ,

Prob{c + 1→ c} = k1(c + 1)∆tPc+1(t) ,

Prob{c→ c + 1} = k2(nT − c)∆tPc(t) ,

Prob{c− 1→ c} = k2(nT − c + 1)∆tPc−1(t) .

Combining these equations into one we obtain

Pc(t+∆t) = Pc(t)+k2(nT−c+1)∆tPc−1(t)−k2(nT−c)∆tPc(t)+k1(c+1)∆tPc+1(t)−k1c∆tPc(t) .

Moving Pc(t) to the left-hand-side of the equation, dividing by ∆t and taking the limit
∆t→ 0, we obtain the master equation of Sc, for 0 ≤ c ≤ nT :

d

dt
Pc(t) = k2(nT − c + 1)Pc−1(t)− k2(nT − c)Pc(t) + k1(c + 1)Pc+1(t)− k1cPc(t) . (4.60)

These are nT + 1 differential equations and their solution would give us the temporal
evolution of the probability of c molecules Sc. For So the master equation is

d

dt
Po(t) = k1(nT − o + 1)Po−1(t)− k1(nT − o)Po(t) + k2(o + 1)Po+1(t)− k2oPo(t) . (4.61)
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Although the master equation for this system are relatively simple, the explicit derivation
of the solution to the differential equations (4.60) respectively (4.61) requires some ef-
fort8. We therefore first look at the steady state distributions, i.e., solve the equations for
d
dtPc(t) = 0. On the way we learn about the concept of probability generating functions.

4.7.1 Steady-state solution for the master equation

For d
dtPc(t) = 0, we can simplify the notation by ignoring t and thus obtain a linear

difference equation in one-variable for the isomerization reaction (4.59):

0 = k1(c+1)P (c+1)−(k1−k2)cP (c)−k2nT P (c)+k2nT P (c−1)−k2(c−1)P (c−1) . (4.62)

Looking at the right-hand side we notice a structure with four cases

(c + 1)P (c + 1) , cP (c), P (c) , (c− 1)P (c− 1) .

To solve the difference equation (4.62) we introduce the probability generating functionprobability generating
function (pgf)

P (n)
pgf−−→ P(z) =

nT∑

n=0

ziP (n) (4.63)

where z < 1, and nT denotes the total number of molecules,

P(1) =

nT∑

n=0

P (n) = 1 .

The rule (4.63) transforms P (i) into P(z) and the aim is to transform (4.62) entirely into
the ‘z-domain’ and thereby help solving it. In the engineering sciences similar transforma-
tions are a common tool to solve differential and difference equations. Next, to consider
P (n− 1) let n = i− 1 such that

P(z) =

nT +1
∑

i=1

zi−1P (i− 1) = z−1

[
nT +1
∑

i=1

ziP (i− 1)

]

= z−1

[
nT∑

i=0

ziP (i− 1) + znT +1P (nT )

]

,

where P (−1), and the last term on the right corrects for the sum going only to nT . We
can rewrite this to obtain

zP(z)− znT +1P (nT ) =

nT∑

i=0

ziP (i− 1)

which implies the transformation rule

P (i− 1)
pgf−−→ zP(z)− znT +1P (nT ) (4.64)

The next case to consider is P (i + 1), for which we let n = i + 1 such that

P(z) =

nT +1∑

i=−1

zi+1P (i + 1) = P (0) + z

[
nT∑

i=1

ziP (i + 1)− znT P (nT + 1)

]

,

= P (0) + z

[
nT∑

i=0

ziP (i + 1)

]

, since P (nT + 1) = 0

8Well, actually using a computer and a mathematical software package, it is rather simple solve these
equations numerically or analytically. We here prefer the ‘pen-and-paper’ approach as it will help us gain
skills in manipulating equations.
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and from which we get the transformation rule

P (n + 1)
pgf−−→ 1

z

[
P(z)− P (0)

]
(4.65)

Taking the first derivative of P(z),

dP(z)

dz
=

nT∑

n=0

nzn−1P (n) = z−1
nT∑

n=0

nP (n)zn

from which get the rule

nP (n)
pgf−−→ z

dP(z)

dz
(4.66)

From (4.64) and (4.66) we have

(n− 1)P (n− 1)
pgf−−→ z2 dP(z)

dz
− znT +1nT P (nT ) (4.67)

From (4.65) and (4.67)

(n + 1)P (n + 1)
pgf−−→ 1

z

[

z
dP(z)

dz
− 0

]

=
dP(z)

dz
(4.68)

If we now return to the steady-state equation (4.62) of our isomerization reaction example
and apply the transformation rules we obtain

k1
dP(z)

dz
− (k1 − k2)z

dP(z)

dz
− k2nT P(z) + k2nT

[
zP(z)− znT +1P (n)

]

− k2

[

z2 dP(z)

dz
− znT +1nT P (nT )

]

= 0 (4.69)

which reduces to

[k1(1− z) + k2z(1− z)]
dP(z)

dz
− k2nT (1− z)P(z) = 0

dividing both sides by (1− z) and denoting dP/dz = P′, this leads to

P(z)′

P(z)
=

k2nT

k2z + k1
.

From integration we know
∫

f ′(x)

f(x)
dx = ln |f(x)|+ α

where α denotes some constant. Applied to our expression this means that

ln
(
P(z)

)
= nT ln(k2z + k1) + ln(α) = ln

(
α(k2z + k1)

nT
)

,

which implies

P(z) = α(k2z + k1)
nT . (4.70)

From (4.63), P(z = 1) = 1, which gives us

α =
1

(k2 + k1)
nT

,
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inserted into (4.70) leads to the pgf transform of the steady-state equation of the isomer-
ization reaction (4.59):

P(z) =
1

(k2 + k1)
nT
· (k2z + k1)

nT (4.71)

=
1

(k2 + k1)
nT

nT∑

i=0

(
nT

i

)

(k2z)nT−iki
1

=
1

(k2 + k1)
nT

nT∑

i=0

(
nT

j

)

knT−i
1 (k2z)i . (4.72)

Comparing this with the definition of the pgf, we obtain for the solution of (4.62) the
steady state probability distribution of Sc as

P∞(c) =

(
nT
c

)
k1

nT−ckc
2

(k2 + k1)
nT

. (4.73)

Likewise, the steady-state distribution for So is

P∞(o) =

(
nT
o

)
k2

nT−cko
1

(k2 + k1)
nT

. (4.74)

Looking at this discrete probability distribution, it looks very similar to a binomial distri-
butionbinomial distribution

P (i) =

(
nT

i

)

pi(1− p)nT−i .

Indeed, we can show that (4.74), w.r.t. So, is indeed a binomial probability distribution
with

p =
k1

k1 + k2

where p denotes the probability of the transition o→ o + 1:

(
nT

i

)
ki

1

(k1 + k2)
nT
· knT−i

2 =

(
nT

i

)
ki

1

(k1 + k2)
nT
· k

nT
2

kj
2

=

(
nT

i

)
ki

1

(k1 + k2)
nT
· knT

2

(k1 + k2)
i
· (k1 + k2)

i

ki
2

=

(
nT

i

)
ki

1

(k1 + k2)
nT
· knT

2

(k1 + k2)
i
·
(

k2

k1 + k2

)−i

=

(
nT

i

)(
k1

k1 + k2

)i

·
(

k2

k1 + k2

)nT

·
(

k2

k1 + k2

)−i

=

(
nT

i

)(
k1

k1 + k2

)i

·
(

k2

k1 + k2

)nT−i

=

(
nT

i

)(
k1

k1 + k2

)i

·
(

k1 + k2 − k1

k1 + k2

)nT−i

=

(
nT

i

)(
k1

k1 + k2

)i

·
(

1− k1

k1 + k2

)nT−i

=

(
nT

i

)

pi(1− p)nT−i .

For Sc the parameter p is equal to k2/(k1 + k2). The distribution depends on two param-
eters nT and p.
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Fig. 4.20: Binomial distribution for different values of the parameters p and nT . With
regard to the isomerization reaction (4.59), the plot shows that the variance of the steady
state distribution increases with a decreasing total number of molecules.

Figure 4.20 illustrates the binomial probability distribution that is also the steady state
probability distribution for our molecular system. The mean and variance of the binomial
distribution give us the mean

〈Sc(t)〉 = nT p ,

and standard deviation
√

nT p(1− p) .

To get a measure of variability that is independent of the mean, one usually considers the
coefficient of variation (CV), which is the standard deviation, divided by the mean: coefficient of variation

CV∞
o =

√
1− p

nT p
=

1√
nT

√

k2

k1
, (4.75)

CV∞
c =

1√
nT

√

k1

k2
. (4.76)

We can then say that the equilibrium coefficient of variation for So is inversely proportional
to the square root of nT . This is important for our discussion on the motivation for
stochastic modelling. We find that if nT increases by a factor of four, the relative variation
halves. We remember that a small number of molecules suggested more randomness and
hence the need for a stochastic model. However, so far we have only considered the steady
state distribution and do not know how the relative variation changes beginning at time
zero. In the next section we are going to show that the variation does actually increase
with time, which means that if we are interested in the transient dynamic phase of the
system’s response and not in what happens as t→∞, a mass action model can be a good
approximation even for small numbers of molecules. This is illustrated in Figure 4.21 for
nT = 100 and a single realization and in Figure 4.22 for nT = 10 and an average over
five simulation runs. What can be clearly seen is a dynamic or transient phase before
the system enters a steady state. This transient phase obviously occurs only if the initial
conditions are different to the steady-state value. Figure 4.23 shows a single run of the
stochastic simulation and over a longer period of time. This plot has been used in [RWA02]
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Fig. 4.21: Single realization of a stochastic simulation of an isomerization reaction with
nT = 100 molecules and k1 = k2 = 1. The smoother dash-dotted curve shows the solution
of the mass action model. Both curves are for Sc of (4.59).
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Fig. 4.22: Average over five runs of a stochastic simulation for an isomerization reaction
(4.59), Sc, with nT = 10 molecules and k1 = k2 = 1. The smoother dash-dotted curve shows
the solution of the mass action model.

but by choosing a longer time interval and starting with initial conditions near the steady-
state, this plots hides the transient phase. Showing a single run or realization is in any
case meaningless. If random fluctuations are important and they should not be ignored
in modelling, then any analysis of observations or parameter estimation must be based
on multiple repeated simulation runs or experiments. The simulations in Figure 4.21 and
4.22 also show that the variance of the stochastic simulation is smaller during the transient
phase than at steady state. We will investigate this further in the next section.

In the present Section we introduced the concept of probability generating functions
and conclude with properties of the pgf, which would have allowed us to derive the mean
and variance of So directly from our knowledge of (4.71). Apart from the general definition
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Fig. 4.23: Single run of the stochastic simulation using the parameters as in Figure 4.22.
The point of this figure is that the time scale chosen matters, initial transients may be hidden
for too long time scales on the plot and secondly that a single run is somewhat meaningless
if the number of molecules are low and the variability is high. The more “stochastic” the
data, the more realizations are required for averaging.

of the pgf P(z) and its first derivative P′(z) let us consider the second derivative P′′(z):

P(z)
.
=

∞∑

n=0

znP (n) ,

P′(z) =
∞∑

n=1

nP (n)zn−1 ,

P′′(z) =
∞∑

n=2

n(n− 1)P (n)zn−1 ,

where it does not matter whether the limit of the sum is finite or not. We have

P(z = 1) =
∞∑

n=1

P (n) = 1

such that

E[Sc] = P′(1) =
∞∑

n=0

nP (n)

and

P′′(z = 1) =

∞∑

n=0

n(n− 1)P (n) = E[S2
c ]− E[Sc]

such that the variance can be calculated from

Var[Sc] = P′′(1) + P′(1)−P′(1)
2

= E[S2
c ]− E[Sc]

2 .

With (4.71) we have for the isomerization example (4.59)

E[Sc(t→∞)] =
k2nT

k1 + k2

and

Var[Sc(t→∞)] =
k1k2nT

(k1 + k2)
2 .
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4.7.2 Temporal evolution of average and variance

The previous section analyzed the steady-state properties of the isomerization process. The
main reason to look at the steady-state distribution was mathematical convenience rather
than biological reasoning. This analysis then showed that the smaller the total number
of molecules nT , the greater the variance of the steady-state distribution. This or similar
arguments have been used to argue the case for stochastic modelling (e.g. [RWA02, RA03]).
The simulations did however also show that for if the initial conditions of the system are
away from the equilibrium, a transient period occurs during which the variance and mean
of the stochastic process change and furthermore, that during the dynamic period of the
system away from equilibrium the variance is smaller than it is at steady-state. This would
then suggest that during this transient period, the discussion of whether a generalized mass
action model or a chemical master equation (2.25) is more appropriate, the arguments
against the supposedly “deterministic” model are less serious and even for low numbers
of molecules the mass action model (2.23) may provide a reasonable approximation for
the observations we make from experimental data. To investigate this question further,
in the following three sections, we are going to derive the equations that describe the
temporal evolution of the mean and variance of the chemical master equation (2.25). The
solutions for the temporal evolution of mean and variance confirm and quantify the quality
of approximation of the mass action model during transient and steady-state phase. An
interesting finding is that the greater the differences between the rate constants of the
process, the smaller is the coefficient of variation. This means that in order to provide a
comprehensive comparison of the mass action and CME approach it is important to take
account of the initial conditions as well as the relationship between the parameter values
of the system.

To derive differential equations for the average and variance, we first introduce the
propagator functionpropagator function

dS(dt; S(t), t)
.
= S(t + dt)− S(t) . (4.77)

Note that dS is a random variable as is S(t). We can therefore as for

Prob{ dS(dt; S(t), t) = νµ } = aµ

(
S(t)

)
dt ,

where νµ is then the realization of random variable dS and aµ, defined on page 86, is the
propensity (probability per unit time) of Rµ and aµdt is therefore the probability for an Rµ

reaction to occur. The changes that in case of a reaction occur in the populations of the
molecular species are described by νµ. The νµ are therefore realizations of random variable
dS. For our particular example of the isomerization process (4.59) with nT molecules we
have

ν1 = 1 , ν2 = −1 , a1 = k1Sc(t) , a2 = k2So(t) = k2(n− Sc(t)) .

dS(dt; S(t), t) is therefore simply the average in (t, t+dt), taken across the reaction channels

dS(dt; S(t), t) =
M∑

µ=1

νµaµ(S(t))

︸ ︷︷ ︸

average across channels

dt .

We can generalize this propagator function to

dSr(dt; S(t), t)
.
= Wr(S(t))dt =

M∑

µ=1

νr
µaµ(S(t))dt , r = 1, 2, . . .

From (4.77) we have
S(t + dt) = S(t) + dS(dt; S(t), t)
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Taking the average
〈S(t + dt)〉 =

〈
S(t)

〉
+
〈
W1

(
S(t)

)〉
dt .

For the temporal evolution of the average we therefore have the differential equation

d

dt
〈S(t)〉 = 〈W1

(
S(t)

)
〉 (4.78)

The differential equation for the temporal evolution of the variance is slightly more
complicated:

S2(t + dt) = S2(t) + 2S(t)dS(dt; S(t), t) + dS2(dt; S(t), t)

〈S2(t + dt)〉 = 〈S2(t)〉+ 2〈S(t)W1(S(t))〉dt + 〈W2(S(t))〉dt

d

dt
〈S2(t)〉 = 2〈S(t)W1(S(t))〉+ 〈W2(S(t))〉dt

From
Var[S(t)] = 〈(S(t)− 〈S(t)〉)2〉 = 〈S2(t)〉 − 〈S(t)〉2

we have

d

dt
Var[S(t)] =

d

dt
〈S2(t)〉 − 2〈S(t)〉 d

dt
〈S(t)〉

= 2〈S(t)W1(S(t))〉+ 〈W2(S(t))〉 − 2〈S(t)〉〈W1(t)〉

We therefore have for the ODE describing changes in the temporal evolution of the variance

d

dt
Var[S(t)] = 2 [〈S(t)W1(S(t))〉 − 〈S(t)〉〈W1(S(t))〉] + 〈W2(S(t))〉 (4.79)

These equations are general, applying them to the isomerization reaction,

W1(Sc) = a1ν1 + a2ν2 = −k1Sc + k2(nT − Sc) ,

W2(Sc) = a1ν
2
1 + a2ν

2
2 = k1Sc + k2(nT − Sc) ,

leading to
d

dt
〈Sc(t)〉 = 〈W1(Sc(t))〉 = k2nT − (k1 + k2)〈Sc(t)〉 (4.80)

and finally for the isomerization reaction the changes of the average over time are described
by

d

dt
〈Sc(t)〉 = −(k1 + k2)〈Sc(t)〉+ k2nT . (4.81)

Similarly, inserting all known values into (4.79),

d

dt
Var[Sc(t)] = 2 [〈Sc(t)W2(Sc(t))〉 − 〈Sc(t)〉〈W1(Sc(t))〉] + 〈W2(Sc(t))〉

= −2(k1 + k2)
[

〈S2
c (t)〉 − 〈Sc(t)〉2

]

+ k2nT + (k1 − k2)〈Sc(t)〉 ,

leading finally to

d

dt
Var[Sc(t)] = −2(k1 + k2)Var[Sc(t)] + (k1 − k2)〈Sc(t)〉+ k2nT . (4.82)

Since the differential equation for the variance does also depend on the mean it is somewhat
more complicated, although not impossible to find a solution analytically. The easiest way
is of course to use some mathematical software tool such as, for example, Matlab, Maple,
or Mathematica.
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Fig. 4.24: Temporal evolution of the mean, standard deviation and coefficient of variation
of Sc for the isomerization reaction (4.59), where k1 = 1, k2 = 1.
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Fig. 4.25: Temporal evolution of the mean, standard deviation and coefficient of variation
of Sc for the isomerization reaction (4.59), where k1 = 1, k2 = 3.

The numerical solutions of the differential equations (4.78) and (4.79) for our example
of the isomerization reaction (4.59) are shown in Figures 4.24 and 4.25. In Figure 4.25 the
rate constants are different, k2 = 3, while k1 = 1 such that p = 3/4. Figure 4.20 shows
that for small nT the steady state distribution is skewed. The steady state value of the
coefficient of variation for Sc decreases as k2 becomes larger than k1 and this without any
change to the total number of molecules.

4.7.3 Solution of the mass action model

For monomolecular reactions, the mean of the stochastic model should coincide with the
solution of the mass action model. In this section we therefore derive the mass action
model for (4.59)

R1 : Sc
k1−→ So , R2 : S0

k2−→ Sc .

The differential equations are

dSc

dt
= −k1Sc + k2So

dSo

dt
= k1Sc − k2Sc
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where dSc/dt = −dSo/dt. Focussing therefore on Sc, we can easily identify the steady-state
part of the solution as

Scss =
k2nT

k1 + k2
,

For the transient solution we expect an exponential function

Sctr = n∗ · e−(k1+k2)t ,

where n∗ is some unknown coefficient. The solution will be the sum of the transient and
steady-state terms

Sc(t) = n∗e−(k1+k2)t +
k2nT

k1 + k2
.

At t = 0,

Sc(0) = n∗ +
k2n

k1 + k2
from which n∗ = Sc(0)−

k2nT

k1 + k2

such that

Sc(t) =

(

Sc(0)−
k2nT

k1 + k2

)

e−(k1+k2)t +
k2nT

k1 + k2
.

For k1 = k2 = 1, the solution of the mass action model is given by

Sc(t) =
(

Sc(0)−
nT

2

)

e−2t +
nT

2

If Sc(0) > nT /2 the amount of Sc exponentially decays to the value nT /2.

We note in passing that numerical solutions for the mass action model (2.23) can
very easily be obtained using some mathematical software package such as, for example,
Matlab, Maple or Mathematica. There are also numerous free software packages, some of
which are specifically developed to simulate biochemical reaction networks. The SBML
web-site provides links to most of those packages: www.sbml.org. In Figure 4.26 this is
illustrated for Matlab.

function [t,n] = gma(tspan,pars)

NAV = pars{1}; % product of Avogadro constant and Volume.

S0 = pars{8}; % initial conditions.

options = odeset(’refine’,16); % options for the ODE solver.

[t,S] = ode15s(@compdS,tspan,S0,options,pars); % ODE solver.

n = NAV*S*1e-9; % number of molecules predicted by gma

function dS = compdS(t,S,pars)

k = pars{2}; % rate constants

M = pars{4}; % number of reaction channels

p = pars{5}; % index selection for molecular species

l = pars{6}; % stoichiometric coefficient

nu = pars{9};% changes that occur in each channel

for u=1:M

P(u) = prod(S(p{u}(:)).^l{u}(:));

end dS = (k.*P*nu)’;

Fig. 4.26: Matlab functions to simulate a mass action model. The elements of these functions
are a translation of Equation 2.23. The variable tspan defines the simulation period and
pars collects all parameters that may be relevant.

This section has shown again that it is important to distinguish between stochastic
mechanisms and modelling observations, regardless of whether they are ‘deterministic’ or
‘stochastic’. Here we distinguish between random and stochastic processes. A ‘random

www.sbml.org
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process’ or ‘noise’ is a description of a phenomena where observations of real or simulated
data are subject to fluctuations that are either not predictable or appear unpredictable.
A ‘stochastic process’ is a mathematical concept that can be employed to model random
processes. Reducing the discussion to a choice of a ‘deterministic’ or ‘stochastic’ model
is misleading. We need to distinguish between the hypothesis of a stochastic mecha-
nism (“intrinsic noise”), random variations in observations (“observation or measurement
noise”) and how to represent these phenomena with the help of mathematical models. If
intrinsic or extrinsic random fluctuations are significant, it is necessary to obtain repeated
measurements and simulations to reduce uncertainty.

Noise can have a role in biological function or is simply a nuisance in understanding
intracellular dynamics. The integration of many processes or components, each displaying
random behavior, can lead to regularity. Tissue, and organs are examples of higher levels
of organizations where a large number of cells are integrated into a larger whole.

4.7.4 Generating functions

In Section (4.7.1) we made use of the probability generating function to derive the mean
and variance of the steady-state probability distribution. Our derivation focussed on a
transformation of the chemical master equation (CME) for our particular example. Here
we introduce the concepts of moment generating functions9 and cumulant generating func-
tions. These are convenient transformations to help generate equations for probabilities,
mean and variance of the general CME (2.25):

∂Pn(t)

∂t
=

M∑

µ=1




aµ(n− νµ)Pn−νµ(t)
︸ ︷︷ ︸

gain term

− aµ(n)Pn(t)
︸ ︷︷ ︸

loss term




 , n = 0, 1, 2, . . . , nT , (4.83)

where P (n, t) ≡ Pn(t) and state transitions, towards n :

n− vµ
aµ(n−νµ)−−−−−−→ n (“gain”) ,

with propensity aµ(n− νµ), and away from n:

n
aµ(n)−−−→ n + νµ (“loss”) ,

with propensity aµ(n). Let the propensity of reaction channel Rµ be generally defined as

aµ(n) =
∑

r

cµrn
r , (4.84)

with some coefficient cµr, unrelated to the stochastic reaction constant cµ in stochastic
simulation. This general expression includes as a special case the linear version (4.28)
defined in Section 4.5.1.

Let us first consider the probability generating function (pgf)

P(z, t)
.
=
∑

n

znPn(t) , (4.85)

where z is some real number 0 ≤ z ≤ 1 and 0 ≤ n ≤ ∞. Note that if the total number of
molecules is limited to nT , terms higher than nT will be zero. Multiplying both sides of

9For basic introduction to probability- and moment generating functions we refer to [JS01].
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(4.83) with zn, taking the sum over all possible states and inserting (4.84) for aµ, gives us
the following expression

∑

n

zn ∂Pn(t)

∂t
=
∑

µ

[
∑

n

zn
∑

r

cr(n− νµ)rPn−νµ(t)−
∑

n

zn
∑

r

crn
rPn(t)

]

,

=
∑

µ

[
∑

r

cr

∑

n

zn(n− νµ)rPn−νµ(t)−
∑

r

cr

∑

n

znnrPn(t)

]

. (4.86)

From (4.85),
∑

n

zn ∂Pn(t)

∂t
=

∂P(z, t)

∂t
,

which translates us the left-hand side of (4.86). Furthermore, from (4.85)

z
∂P(z, t)

∂z
=
∑

n

znnPn(t) , (4.87)

z2 ∂2P(z, t)

∂z2
=
∑

n

znn2Pn(t) , (4.88)

...

zr ∂rP(z, t)

∂zr
=
∑

n

znnrPn(t) , (4.89)

where the last rule gives us a transformation of the “loss-term” of (4.86). From the
“gain-term” consider the sum

∑

n

zn(n− νµ)rPn−νµ(t) ,

which by introducing a new index m = n− ν can be rewritten as

zνµ
∑

m

zmmrPm(t) ,

which, from (4.89) gives us the transformation

∑

n

zn(n− νµ)rPn−νµ(t)→ zνµzr ∂rP(z, t)

∂zr
.

We are now in a position to transform (4.86) into

∂P(z, t)

∂t
=

M∑

µ=1

[
∑

r

crz
νµzr ∂rP(z, t)

∂zr
−
∑

r

crz
r ∂rP(z, t)

∂zr

]

,

=
M∑

µ=1

(zνµ − 1)
∑

r

crz
r ∂rP(z, t)

∂zr
.

(4.90)

With the definition for aµ, (4.84), this leads us to the general transformation of the
chemical master equation by means of a probability generating function:

∂P(z, t)

∂t
=
∑

µ

(zνµ − 1) aµ

(

z
∂

∂z

)

P(z, t) (4.91)
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Solving and inverting this equation gives the temporal evolution of the probabilities.

For our example of an isomerization reaction, (4.59),

Sc

k1−→←−−
k2

So (4.59)

let #Sc = n and #So = nT − n,

a1(n) = k1n , ν1 = −1 ,

a2(n) = k2(nT − n) , ν2 = +1 .

To apply (4.91), replace n by the operator

a1

(

z
∂

∂z

)

= k1
∂

∂z

a2

(

z
∂

∂z

)

= k2nt − k2z
∂

∂z
,

such that

∂P(z, t)

∂t
=
∑

µ

(zνµ − 1) aµ

(
∂

∂z

)

P(z, t)

=
(
(z−1 − 1

)
k1z

∂P(z, t)

∂z
+ (z − 1)

[

k2nT − k2z
∂

∂z

]

= (z − 1)k2nT P(z, t)− (z − 1)(k1 + k2)
∂P(z, t)

∂z
.

Solving this equation is usually not trivial and for our particular example of an isomeriza-
tion reaction, the solution gives the pgf

P (z, t) = (k1 + k2)
−nT

[

k1 + k2z − k2(z − 1)e−(k1+k2)t
]nT−#Sc(0)

·
[

k1 + k2z + k1(z − 1)e−(k1+k2)t
]#Sc(0)

.

(4.92)

The pgf can be used to obtain expressions for the mean and variance. For this we can
facilitate the following nice properties of the pgf. Let us first summarize the pgf and its
derivatives:

P(z, t)
.
=

∞∑

n=0

znPn(t) ,

P′(z, t) =
∞∑

n=1

nPn(t)zn−1 ,

P′′(z, t) =
∞∑

n=2

n(n− 1)Pn(t)zn−1 ,

We have

P(z = 1, t) =
∞∑

n=1

Pn(t) = 1

such that the mean is given by10

〈S(t)〉 = P′(z = 1, t)

=
∞∑

n=0

nPn(t) (4.93)

10We could also write for the mean E[S(t)] but this may suggest a mean over time. We are here
considering a mean of S at a particular, fixed t and hence write 〈S(t)〉.
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and

P′′(z = 1, t) =

∞∑

n=0

n(n− 1)Pn(t) = 〈S(t)2〉 − 〈S(t)〉

such that the variance can be calculated from

Var[S(t)] = P′′(1, t) + P′(1, t)−P′(1, t)
2

= 〈S(t)2〉 − 〈S(t)〉2 . (4.94)

Making all the substitutions required by hand is cumbersome. For the example of the
isomerization reaction, in Figure 4.27 it is shown how, using Matlab, we can derive the
equations symbolically.

clear all,clc

syms k1 k2 z t nT S0 positive % define symbolic variables.

P=(k1+k2)^-nT*(k1+k2*z-k2*(z-1)*exp(-(k1+k2)*t))^(nT-S0)...

*(k1+k2*z+k1*(z-1)*exp(-(k1+k2)*t))^S0;

mu = simple(subs(diff(P,z),z,1)); % mean as a function of time.

disp(’mu = ’); pretty(mu)

mu_init = simple(subs(mu,t,0)); % set the initial mean.

disp(’mu_init = ’); pretty(mu_init)

mu_ss = simple(subs(mu,t,inf)); % steady-state for mean.

disp(’mu_ss = ’); pretty(mu_ss)

sigma2 = simple(subs(diff(P,z,2),z,1)+mu-mu^2); % variance

disp(’sigma2 = ’); pretty(sigma2)

dsigma2 = simple(diff(sigma2,t)); % derivative of variance.

disp(’dsigma2 = ’); pretty(dsigma2) sigma2_init = simple(subs(sigma2,t,0));

disp(’sigma2_init = ’); pretty(sigma2_init)

sigma2_ss = simple(subs(sigma2,t,inf)); % steady-state variance.

disp(’sigma2_ss = ’); pretty(sigma2_ss)

Fig. 4.27: Matlab code to obtain symbolic expressions for the temporal evolution as well as
steady-state distributions for the isomerization reaction, using Eq. (4.92).

The mean and variance are extremely useful in characterizing a probability distribu-
tion, the mean is a measure of ‘central tendency’ while the variance describes the ‘spread’
of the distribution around this central value. In general, however these two measures can-
not uniquely characterize a distribution. For this purpose, a sequence of constants, called
moments, has been introduced to describe the shape of a distribution. At a particular t, moments

for n being the scalar outcome of a random variable S, for discrete distributions the ith
moment mi around zero is defined11 by

mi =
∑

n

nipn , i = 1, 2, . . . (4.95)

The first two moments around the origin add nothing to what the mean and variance tell
us since

m1 =
∑

n

npn = E[S]

m2 =
∑

n

n2pn =
∑

n

(n− E[S])2pn + (E[S])2
(
∑

n

pn

)

,

such that
Var[S] = m2 − (E[S])2 .

It then turns out that m3 measures asymmetry or ‘skewness’ about the mean and m4 skewness

11In the definition of the moments we focus on a particular, fixed point in time and we may therefore
leave out t from the equations to simplify the notation.
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measures ‘flatness’. Skewness is defined by

E[(S −m1)
3] = E[S3 − 3S2m1 + 3Sm2

1 −m3
1]

= m3 − 3m1m2 + 2m3
1 . (4.96)

We notice that the definition of skewness is only indirectly defined by m3. Further below
we find that cumulants will provide a more direct measure.

The moment generating function (mgf) M is defined as the Laplace transformation ofmoment generating
function the probability distribution pn:

M(θ) =

∫

pneθndn , (4.97)

which may also be seen as the expectation

M(θ) = E
[

eθn
]

.

For a discrete distribution, the mgf M is defined by

M(θ) =
∑

n

eθnpn .

Now allowing t to return into the equations, if we compare the probability generating
function (4.85) with those of the moment generating function we have

M(θ, t) = P(eθ, t) , (4.98)

where we can arrive at the moment generating function simply by making the following
substitution

z = eθ .

Making use of the chain rule,

∂M

∂θ
=

∂P

∂z
· ∂z

∂θ
= z

∂P

∂z

therefore

z
∂

∂z
=

∂

∂θ
.

Considering now the definition for propensity aµ, (4.84), we can make the simple substi-
tution

aµ

(

z
∂

∂z

)

= aµ

(
∂

∂θ

)

in (4.91) to get the moment generating function of the general CME

∂M(θ, t)

∂t
=
∑

µ

(

eθνµ − 1
)

aµ

(
∂

∂θ

)

M(θ, t) (4.99)

To check that M(θ, t) is indeed a generating function, let us consider

M(θ, t) = P(eθ, t) =
∑

n

eθnpn(t)

with

eθn =
∑

i

(θn)i

i!
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this becomes

M(θ, t) =
∑

n

pn(t)
∑

i

θini

i!
=
∑

i

θi

i!

∑

n

nipn(t) .

From the definition of moments

mi(t) =
∑

n

nipn(t) , i = 1, 2, . . .

and therefore

M(θ, t) =
∑

i

mi(t)
θi

i!
. (4.100)

Now, if we remember the Taylor series, which is a series expansion of a function, f(t), Taylor series

about a point t0,

f(t) = f(t0) + (t− t0)f
′(t0) +

1

2!
(t− t0)

2f ′′(t0) + . . . (4.101)

where f ′ and f ′′ denote the first and second derivative. If t = 0, the expansion is known
as a MacLaurin series. By letting t − t0 ≡ θ, and substituting t = t0 + θ into (4.101) we MacLaurin series

get the alternative version

f(t0 + θ) = f(t0) + f ′(t0)θ +
1

2!
f ′′(t0)θ

2 + . . .

=
∑

i

miθ
i , where mi =

f (i)(t0)

i!

=
∑

i

mi
θi

i!
, where mi = f (i)(t0) . (4.102)

where f (i) denotes the ith derivative of f . Comparing (4.102) with (4.100), we notice that
the moment function mi(t) ought to be the ith derivative of M(θ, t) at θ = 0:

mi(t) =
diM(θ, t)

dθi

∣
∣
∣
∣
θ=0

. (4.103)

Next we introduce the cumulant generating function (cgf) cumulant generating
function

C(θ, t) = ln
(
M(θ, t)

)
(4.104)

and consider its expansion

C(θ, t) =
∑

i

κi(t)
θi

i!

so that κi(t) is the cumulant function for which

κi(t) =
diC(θ, t)

dθi

∣
∣
∣
∣
θ=0

= C(i)(0, t) (4.105)

It is useful to establish a relation between the cumulant and moment functions. Starting
with

mi(t) = M(i)(0, t) ,

from (4.104),
M(θ, t) = eC(θ,t)

such that

mi(t) =
(

eC(θ,t)
)(i)
∣
∣
∣
∣
θ=0

.
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Now
(

eC(θ,t)
)(i)

=
(
C′(θ, t) ·M(θ, t)

)(i−1)

To proceed we require the Leibniz’s theorem for differentiation12 of a product of two Leibniz’s theorem

functions f and g

(f · g)′ = f · g′ + f ′ · g
(f · g)′′ = (f · g′′ + f ′ · g′) + (f ′ · g′ + f ′′ · g) = f · g′′ + 2f ′ · g′ + f ′′ · g

...

(f · g)(i) =
i∑

r=0

(
i

r

)

f (i−r) · g(r) .

Comparing this to

(
C′(θ, t) ·M(θ, t)

)(i−r)
=

i−1∑

r=0

(
i− 1

r

)

C(i−1)(θ, t) ·M(r)(θ, t) .

Therefore

mi(t) =

i−1∑

r=0

(
i− 1

r

)

Ci−r(0, t) ·M(r)(0.t) at θ = 0 .

However, we also know from (4.105) and (4.103)

C(i−r)(0, t) = κi−r(t) and M(r)(0, t) = mr(t) ,

hence a general relationship between cumulants and moments is given by

mi(t) =
i−1∑

r=0

(
i− 1

r

)

κi−1(t)mr(t) where m0(t) = 1 . (4.106)

For i = 1, 2, 3, we have

m1(t) = κ1(t) = 〈S(t)〉 (4.107)

m2(t) = κ2(t) + κ1(t)m1(t) (4.108)

m3(t) = κ3(t)2κ2(t)m1(t) + κ1(t)m2(t) (4.109)

From (4.107) and (4.108),

κ2(t) = m2(t)−m2
1(t) = Var[S(t)] . (4.110)

Noting that m1 = E[S] and m2 = E[S2] and Var[S] = E[S2]− (E[S])2=m2 −m2
1, we see

that κ1 gives the mean and κ2 defines the variance. Inserting (4.107), (4.110) into (4.109)
gives

m3(t) = κ3(t) + 2m1(t)
(
m2(t)−m2

1(t)
)

+ m1(t)m2(t)

and thus
κ3(t) = m3(t)− 3m1(t)m2(t) + 2m3

1(t) (4.111)

gives a direct measure of skewness. To derive a differential equation for the temporal
evolution of the cgf we first consider the differential equation for the mgf of a CME model,
(4.99). Differentiating (4.104) we have

∂C

∂θ
=

1

M
· ∂M

∂θ
,

∂C

∂t
=

1

M
· ∂M

∂t
12For ease of notation we use here f ′ and f ′′ to denote the first and second-order derivative of function

f .
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Dividing (4.99) by M(θ, t)

1

M

∂M

∂t
=
∑

m

(

eνµθ − 1
) 1

M
aµ

(
∂

∂θ

)

M(θ, t) . (4.112)

If we now restrict the general propensity aµ(n), (4.84), to be of first order, i.e., following
the assumption in Gillespie modelling, then

aµ(n) = cµ0 + cµ1n

Such that

aµ

(
∂

∂θ

)

M(θ, t) = cµ0M + cµ1
∂

∂θ
M

1

M
aµ

(
∂

∂θ

)

M(θ, t) = cµ0 + cµ1
1

M

∂M

∂θ
= cµ0 + cµ1

∂C

∂θ

Now (4.112) becomes for a first-order propensity,

∂C(θ, t)

∂t
=
∑

µ

(

eνµθ − 1
)(

cµ0 + cµ1
∂C(θ, t)

∂t

)

(4.113)

as the cgf equivalent of (4.91) and (4.99). To derive the differential equations for cumu-
lants, consider

eνµθ − 1 =
∑

j>0

νj
µθj

j!
, C(θ, t) =

κi(t)θ
i

i!
,

∂C

∂t
=
∑

i

κ̇iθ
i

i!
,

∂C

∂θ
=
∑

i>0

κiθ
i−1

(i− 1)!

.
=
∑

r

κr+1θ
r

r!
.

Inserting these expression into (4.113),

∑

i

κ̇iθ
i

i!
=
∑

µ








∑

j>0

νj
µθj

j!





(

cµ0 + cµ1

∑

r

κr+1θ
r

r!

)



=
∑

µ

cµ0

∑

j>0

νj
µθj

j!
+
∑

µ

cµ1

∑

j>0

∑

r

νj
µκr+1θ

j+r

j!r!
.

Comparing coefficients with equal powers of θ, beginning with i = 1:

κ̇1 =
∑

µ

cµ0νµ +
∑

µ

cµ1

∑

j+r=1

νj
µκr+1

j!r!
.

Since j > 0, and j + r = 1 implies j = 1, r = 0,

dκ1(t)

dt
=

(
∑

µ

cµ0νµ

)

+

(
∑

µ

cµ1νµ

)

κ1 (4.114)

For i = 2,

1

2!
κ̇2 =

∑

µ

cµ0

ν2
µ

2!
+
∑

µ

cµ1

∑

j+r=2

νj
µκr+1

j!r!
.
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Again, since j > 0, j + r = 2 implies j = 2, r = 0, or j = 1, r = 1,

dκ2(t)

dt
=
∑

µ

cµ0ν
2
µ + 2

∑

µ

cµ1

(

ν2
µκ1

2!
+ νµκ2

)

= 2

(
∑

µ

cµ1νµ

)

κ2 +

(
∑

µ

cµ1ν
2
µ

)

κ1 +
∑

µ

cµ0ν
2
µ . (4.115)

For i = 3,

1

3!
κ̇3 =

∑

µ

cµ0

ν3
µ

3!
+
∑

µ

cµ1

∑

j+r=3

νj
µκr+1

j!r!
.

Again, j + r = 3 implies (j, r) = (3, 0), (2, 1), (1, 2), and thus

dκ3(t)

dt
= 3

(
∑

µ

cµ1νµ

)

κ3 + 3

(
∑

µ

cµ1ν
2
µ

)

κ2 +

(
∑

µ

cµ1ν
3
µ

)

κ1 +
∑

µ

cµ0ν
3
µ . (4.116)

We therefore now have the differential equations for the first three cumulants. Let us
apply this to our example of an isomerization reaction (4.59),

Sc

k1−→←−−
k2

So (4.59)

let #Sc = n and #So = nT − n,

a1(n) = k1n , ν1 = −1 ,

a2(n) = k2(nT − n) , ν2 = +1 .

For aµ(n) = cµ0 + cµ1n, c10 = 0, c11 = k1, c20 = k2nT , c21 = −k2, such that

∑

µ

cµ0νµ = k2nT ,
∑

µ

cµ1νµ = −(k1 + k2) ,

∑

µ

cµ1ν
2
µ = k1 − k2 ,

∑

µ

cµ0ν
2
µ = k2nT ,

∑

µ

cµ1ν
3
µ = −(k1 + k2) ,

∑

µ

cµ0ν
3
µ = k2nT .

For the isomerization reaction the differential equations, describing the temporal evolution
of the cumulants are given as

mean:
dκ1

dt
=− (k1 + k2)κ1 + k2nT , (4.117)

variance:
dκ2

dt
=− 2(k1 + k2)κ2 + (k1 − k2)κ1 + k2nT , (4.118)

skewness:
dκ3

dt
=− 3(k1 + k2)κ3 + 3(k1 − k2)κ2 − (k1 + k2)κ1 + k2nT . (4.119)

This then confirm the result of (4.80) and (4.82). Rewrite the first two equations in matrix
form: [

κ̇1

κ̇2

]

=

[
−(k1 + k2) 0

k1 − k2 −2(k1 + k2)

] [
κ1

κ2

]

+

[
k2nT

k2nT

]

(4.120)

The lower left term of the matrix on the right-hand side, can be interpreted as a coupling
term between mean and variance. For the special case k1 = k2, considered in [RWA02]
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and Section 4.7.1, the mean and variance are uncoupled, the temporal evolution of the
variance is independent of the mean. The solution for κ2 is in this case given by

κ2(t) = e−2(k1+k2)tκ2(0) + k2nT

∫ t

0
e−2(k1+k2)(t−τ)dτ ,

= k2nT

∫ t

0
e−2(k1+k2)(t−τ)dτ since κ(0) = 0 ,

= k2nT e−2(k1+k2)t

∫ t

0
e2(k1+k2)τdτ ,

=
nT

2
· k2

(k1 + k2)
·
(

e−2(k1+k2)t − 1
)

. (4.121)

In general, the solution for the mean of Sc in the isomerization reaction is,

κ1(t) =
nT

k1 + k2

(

k2 + k1e
−(k1+k2)t

)

,

and for the variance

κ2(t) =
k1

k1 + k2

(

1− e−(k1+k2)
)

κ1(t) .

Such calculations are easy to do with a mathematical software package, capable of symbolic
maths. For example, in Mathematica, the two equations are solved by the command:

DSolve[{kappa2’[t]==(k1-k2)*kappa1[t]-2(k1+k2)*kappa2[t]+k2*nT,

kappa1’[t]==-(k1+k2)*kappa1[t]+k2*nT, kappa1[0]==nT, kappa2[0]==0}, {kappa1[t],

kappa2[t]}, t]

For k1 6= k2 the variance is clearly a function of the mean. It is for this reason why one
should consider the coefficient of variation (CV), i.e., the standard deviation divided by
the mean to obtain a measure of variability that is independent of the mean. This then
explains Figures 4.24 and 4.25. For Sc, the coefficient of variation is

CV [Sc(t)] =

√

k1

k1 + k2

(
1− e−(k1+k2)

)
· 1
√

κ1(t)
.

Fig. 4.28: The plots shows the probability distribution evolving with time for the isomer-
ization reaction with k1 = 3, k2 = 1.
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4.7.5 Summary: The master-equation approach

In conclusion, our analysis showed that in order to provide a comprehensive comparison of
the mass action model, (2.23), and the CME, (2.25), it is important to take account of the
initial conditions as well as the relationship between the parameter values of the system. If
the initial conditions of the system are away from the equilibrium, a transient period occurs
during which the variance and mean of the stochastic process change and furthermore,
that during the dynamic period of the system away from equilibrium the variance is
smaller than it is at steady-state. During this transient period, the arguments against the
supposedly “deterministic” model are less serious and even for low numbers of molecules
the mass action model can provide a reasonable approximation for the observations we
make from experimental data. An interesting finding is that the greater the differences
between the rate constants of the process, the smaller is the coefficient of variation.
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5 Cell Communication

The life of multicellular animals begins with the fertilization of an oocyte (egg cell) by a
sperm cell. Thereafter the fertilized egg undergoes a series of cell divisions. In the early
stages of development, individual cells in the embryo are totipotent, i.e., each cell retains
the capacity to differentiate into any one of the many different cell types in the body. As
development proceeds cells become pluripotent, i.e., they become more restricted in their
capacity to generate different types of descendent cells.

The processes of cell differentiation lead to individual cells acquiring specialized struc- cell differentiation

tures and functions. Some mature and terminally differentiated cells do not undergo cell
division, while others (e.g. osteoblasts, chondroblasts, myoblasts,...) divide actively and
thereby act as precursors of terminally differentiated cells. Those precursor cells that
are also capable of self-renewal are known as stem cells (e.g. pluripotent hematopoietic stem cells

stem cells in the bone marrow). The process of differentiation is closely related to mor-
phogenesis, the process by which the structure of the cell is modified through regulated morphogenesis

growth.

While genes clearly have a role in these fundamental processes, by which cells grow,
divide and differentiate, this role is primarily to provide information for the molecules
whose dynamic interactions determine the structure and function of cells. The cell cycle cell cycle

is a sequence of events take the cell from division to division (mitosis). Progression mitosis

through the cell cycle determines proliferation (the increase of the number of cells in a proliferation

population). For example, the essence of cancer is that cells no longer act and react in a
regulated fashion within the context of the organ that defines their environment.

The concept by which interactions of proteins in cell functions are organized are path-
ways. A pathway map exhibits the names of the molecular components, whose interactions pathway map

govern the basic cell functions. This leads us to a definition of pathways as biochemical
networks. One motivation for systems biology is to bring these static diagrams to life by
modelling and simulating the biochemical reactions that underlie cell function, develop-
ment, and disease.

To combine into networks that realize higher levels of organization, such as tissue and
organs, cells must communicate. The physical interface between the inside and outside
of a cell is comprised, amongst other things, of receptors, which can sense extracellular
signals and transduce a signal to the genome where it can effect the transcription of
genetic information. The biochemical reactions that relay signals are organized as signal
transduction pathways in which regulatory feedback loops play a central role. Many cancer
and neurodegenerative diseases are considered a failure of communication at molecular
level.

... more to come.
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6 The Dynamic Systems Approach

This chapter is to consider mathematical modelling and simulation of pathways, i.e., net-
works of biochemical reactions, focussing on dynamic or transient changes.networks

We have so far encountered a range of representations including the biologist’s graphical
pathway map and the biochemist’s formal reaction equations that describe the interactions
of those components referred to in a pathway map. We hereafter seek a similar approach,
devising a graphical representation in form of block diagrams as a representation of math-
ematical equations. The behavior of a formal system is then in turn visualized through
simulation plots, phase planes, and bifurcation diagrams. In many ways both, the exper-
imentalists and theoretician rely on visualizations to help an understanding. This does
not come as a surprise if one accepts the philosophical arguments put forward in the first
chapters of this text.

Biological System Pathway Map

Visualizations Mathematical Equations

Fig. 6.1: Visualization plays an important role in the biological and mathematical sciences.
The biologist visualizes his understanding with a pathway map. Properties of mathematical
models are visualized as simulation plots, phase plane and bifurcation diagrams.

6.1 Pathways as Dynamic Systems

Systems theory and cell biology have enjoyed a long relationship that has received renewed
interest in recent years in the context of systems biology. The term ‘systems’ in systems
biology comes from systems theory or dynamic systems theory : Systems biology is defined
through the application of systems- and signal-oriented approaches for an understanding
of inter- and intra-cellular dynamic processes. The aim of the present text is to review the
systems and control perspective of dynamic systems. The biologist’s conceptual framework
for representing the variables of a biochemical reaction network, and for describing their
relationships, are pathway maps. A principal goal of systems biology is to turn these
static maps into dynamic models which can provide insight into the temporal evolution
of biochemical reaction networks. Towards this end we review the case for differential
equation models as a ‘natural’ representation of causal entailment in pathways. Block-
diagrams, commonly used in the engineering sciences, are introduced and compared to
pathway maps. The stimulus-response representation of a molecular system is a necessary
condition for an understanding of dynamic interactions among the components that make
up a pathway. Using simple examples, we show how biochemical reactions are modelled
in the dynamic systems framework and visualized using block-diagrams.

Pathway maps used are for most cases a graphical representation that lacks a standard
and for which it is not clear which mathematical model should/could be used to simulate
the system. We here introduce a block diagram representation of nonlinear dynamic sys-
tems, which is an unambiguous translation of the mathematical model. Admittedly it is
therefore only suitable for differential equations. The biologist’s conception of a pathway
map is similar to block diagrams that are widely used in the physical- and engineering
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sciences. Arbitrary complex systems can be built up from four basic building blocks:

Integrator:

u

KI

y
y(t) = KI

∫ t

0
u(t)dt

Gain:

u

KP

y
y(t) = KP u(t)

Differentiator:

u

KD

y
y(t) = KD

d

dt
u(t)

Transport Delay:

u

1 Td

y
y(t) = u(t− Td)

The most important block we are going to focus on is that of an integrator, which
describes an accumulation or growth process. The differentiator is simply the reverse
operation to the integrator. As alluded to above, the transport delay block is of particular
importance in simulating the effect of protein translocation, nucleocytoplasmic export
and related spatial effects. Block diagrams differ to pathway maps in that they show
the processing of signals. Block-diagrams are thus a signal-oriented approach, an arrow in
these diagrams is associated with a variable that is changing over time. The arrows are thus
not simply defining ‘associations’, plus/minus signs indicating amplification/inhibition but
instead they are numbers that are added or subtracted. Towards this end, blocks or
subsystems are connected through signals via the following nodes:

junction addition/subtraction

−

×

multiplication

For the addition/subtraction node, if there is no sign, a “+” is assumed. These basic
building blocks form a de facto standard for graphical modelling of control systems cir-
cuits. While the value and use of diagrammatic representations of pathway models and
tools to visualize them are discussed, for example1, in [Kit02, A+04, Laz02], there are no
established standards for pathway maps. Given that we are discussing the value of control
concepts in pathway modelling, we hereafter consider a couple of well studied examples of
biochemical systems and investigate (a) how control block diagram representations might
be used and (b) how a control analyst might incorporate feedback loops in pathway mod-
els. A discussion of how the more conventional pathway maps can serve as information
organizers and simulation guides is discussed in [Koh01].

6.2 The Role of Feedback

Differential equations models are particulary suited to study the role of feedback loops.
One of the first biologists who recognized the importance of biological feedback was René
Thomas [TD90]. For any process that is to maintain, optimize or adapt a condition or
value, information about the ‘is-state’ has to be fed back into the decision on any change
that should occur. In other words, feedback loops are the basis for any form of regulation
and/or control.

1See also http://discover.nci.nih.gov/kohnk/interaction_maps.html

http://discover.nci.nih.gov/kohnk/interaction_maps.html
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Control engineers distinguish between two principal kinds of control systems with
different purposes: a) reference tracking, and b) disturbance rejection. We hereafter refer
to the first case, where the system is sensitive to inputs, as the ability to make changes
as required, e.g., to track or follow a reference signal, as control. On the other hand, we
refer to regulation as the maintenance of a regular or desirable state, making the system
robust against perturbations. Regulation that maintains the level of a variable is also
referred to as homeostasis. Here we should distinguish two forms of robustness in a control
system. The first is robustness against external disturbances (disturbance regulation). In
a biochemical pathway, a disturbance might be caused by unwanted cross-talk from a
neighboring signalling pathway. The second form of robustness, is one which tolerates
parameter changes in a system, without significantly changing the system performance.
Both forms of robustness are important properties in understanding pathways.

u(t)

0
t

“step”

u(t)

0
t

“ramp”

u(t)

0
t

“impulse”

u(t)

0
t

“exponential”

Fig. 6.2: Test signals that can be used to investigate the dynamic behavior of pathways.

A central objective of systems biology is to devise methods that allow the detection
and description of feedback loops in pathways [K+02, SK04]. An important result from
systems theory is that this is only possible through perturbation studies, where the the
system is stimulated with a well defined signal. Unfortunately, experiments in molecular
and cell biology are difficult to set up in a way that suits systems-theoretic approaches. A
major hurdle for the success of systems biology arises therefore from the need to conduct
expensive, time consuming, complex perturbation experiments.

A superficial view of feedback would say that positive feedback is bad (destabilizing)
and negative feedback is good (stabilizing). Indeed, the description of the role of feedback
often implies that in the absence of negative feedback, a system is unbounded, unstable
and not resistant to perturbations. In fact this is not the case, most dynamical systems
exist in a stable manner without the need for feedback. A better way in which to describe
the role of feedback is as a modifier of the dynamical behavior of a system. Depending
upon the nature of the feedback, it can either stabilize, destabilize, sensitize or de-sensitize
the behavior of a process. While positive feedback is conventionally associated with desta-
bilization the truth is more complex, and in many circumstances negative feedback can
have unwelcome effects. However, in the context of the special dynamical model forms
found in pathway modelling, there are certain special dynamical features induced by feed-
back that are important to understand. The following simple models of accumulation or
growth processes will illustrate some of these features as they manifest themselves within
cells.

As an initial demonstration of the features associated with feedback, consider the
simple model of growth (e.g. of a cell or of a population of molecules in the cell). Let u(k)
denote the stimulus of the system at time k and y the response. Let us take the view
that the present depends not only on the current state but also on the past, leading to a
discrete version of a differential equation, called difference equation:

y(k) = f
(
y(k − 1), u(k)

)
. (6.1)

where f describes the detailed functional relationship between the stimulus, the past of y
and the current response y(k). One way to illustrate this is by the following block-diagram:
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u(k) f y(k)

1 1

+

y(k − 1)

In the diagram the two numbers above the transport delay block denote an amplification
of the signal, respectively the unit sampling time delay. For instance, let us look at a
linear system, where f is realized by the following law

y(k) = u(k) + y(k − 1) .

For initial conditions y0 = 0, u0 = 0 if we stimulate the system with a step input, u(k) = 1
for k ≥ 1, a simulation reveals a linearly increasing, unbounded signal (Figure 6.3, left).
Whatever the initial conditions, y0 ≥ 0, the system is unstable and an unrealistic model
for most purposes. Let us therefore see what happens if we add a negative feedback loop
to the system:

f y(k)

1 1

+
u(k)

KP

−

The temporal evolution of the response signal is modelled by the following equation

y(k) =
(
u(k)−KP · y(k)

)
+ y(k − 1) .

A simulation reveals a bounded signal (Figure 6.3, right).
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Fig. 6.3: Illustration of the stabilizing effect of a negative feedback loop in a discrete-time
system. Left: Unstable system with a positive feedback loop. Right: Negative feedback loop
with KP = 1. In both cases the response to unit step input signal is shown.
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6.3 Tutorial Examples

In the following we present very simple examples of biochemical reactions, which are
subsequently translated into a set of mathematical (differential) equations. These in turn
maybe related to a standard positive/negative feedback representation drawn from control
engineering. In general, we say a component or variable of a system is subject to negative
feedback when it inhibits its own level of activity. For example, a gene product that acts
as a repressor for its own gene is applying negative feedback. Likewise, a component of a
system is subject to positive feedback when it increases its own level of activity. Through
these examples we are going to review the concepts of the biochemist’s reaction equation,
pathway maps, differential equations and block diagrams.

Returning to our proteolysis example from the introductory section, we generalize it in
the context of the framework outlined above. Consider a simple monomolecular reaction
where chemical species X is transformed. The change in concentration of X at time
t depends on the concentration of X at time t in that the rate by which the reaction
proceeds is proportional to the concentration at each time instant,

dx(t)

dt
∝ x(t)

with a certain positive rate constant k. A diagrammatic representation of this biochemical
process illustrates the fact that chemical species X “feeds back” on itself:

X X

A linear mathematical ODE model of the process is given by

d

dt
x(t) = k · x(t) .

Here X acts as a substrate being converted and the product. There is positive feedback
in that the larger the product X, the greater the rate of change by which substrate X is
transformed. A simulation of this system reveals the expected unbounded growth in the
concentration of X,

x(t) = x0 · ekt ,

where x0 = x(t = 0) denotes the initial condition. With increasing x, the growth rate
dx/dt also increases in this system, leading to an unbounded growth. Next we look at the
autocatalytic reaction

X + A
k1−−−−−→←−−−−−−
k2

2X

where for a given X molecule, A facilitates the doubling. A pathway map of this process
would be

X X

In pathway maps we use a bar at the end of the arrow to denote an inhibition or negative
feedback loop. If A is considered to have a constant concentration, generalizing the law
of mass action, we arrive at the following differential equation model:

d

dt
x(t) = k1ax(t)− k2x

2(t)

= k1ax(t)

(

1− k2

ak1
x(t)

)

.
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Why we rewrote the equation in the form given in the second line will be clarified below.
In this autocatalytic reaction the ‘product’ has a strong inhibitory effect on the rate at
which X is transformed. In order to indicate the internal feedback mechanisms at work
in this system, we will label the right-hand bracketed term (1− k2x(t)/(ak1)) as a control
input variable u(t)

d

dt
x(t) = k1au(t)x(t) .

Because of the product term on the right-hand side this equation is also referred to as a
model of a bilinear system. If we consider variable x to represent the state of the system,
and we write dx(t)/dt = ẋ for short, this system becomes

ẋ = f(x) + g(x)u , x(t0) = x0 ,

y = h(x) .

We can alternatively write:
u(x) = α− βx ,

where the constant α is called the intrinsic growth rate of the population and α/β corre-
sponds to the maximum attainable population. The model we thus obtain is specified by
the equation

dx

dt
= αx

(
α/β − x

α/β

)

(6.2)

= αx(t)

(

1− β

α
x(t)

)

.

This model form is called the logistic growth model and is equivalent to the autocatalytic
reaction introduced above. The model describes the real growth rate as a proportion
of the intrinsic growth rate. This proportion however decreases with an increase in the
population, leading to a more realistic scenario of a system that remains within bounds
(Figure 6.4). Both previous examples, echo the observations made in the discrete-time
example of a simple growth process with added negative feedback.
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Fig. 6.4: Unbounded and limited growth. Left: Simulation of the monomolecular reaction
with positive feedback. Right: Simulation of an autocatalytic reaction (logistic equation)
with negative feedback. For the solid line x0 = 2, a = 2, b = 1/2.5 and for the dashed line
x0 = 10, a = 2, b = 1/3.

For two molecular species we can generalize the control of the system into

ẋ1 = u1(x1, x2)x1 ,

ẋ2 = u2(x1, x2)x2 .
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If we specify for u1 and u2,

u1(x1, x2) = k1a− k2x2 ,

u2(x1, x2) = k2x1 − k3 ,

we obtain the well known Lotka-Volterra model of two competing populations. If variables
x1 and x2 correspond to the chemical species X1 and X2, the biochemical representation
of this system is

X1 + A
k1−→ 2X1

X1 + X2
k2−→ 2X2

X2
k3−→ B

where A is maintained at a constant concentration and B corresponds to the degradation
of X2. The first two reactions are autocatalytic. Compared to the limited growth model
from above, this system is capable of showing oscillatory behavior. The block diagram for
the Lotka-Volterra model can be drawn directly from those equations:

k1a

+

−

u1
× x1(t)

k2

k2

k3

+

−

u2
× x2(t)

The Lotka-Volterra model of competing species gives an opportunity to discuss the
purpose of mathematical models as a mechanism for illuminating basic principles, while
not necessarily describing the details of a particular case. Specifically, the Lotka-Volterra
model would nowadays be considered an unrealistic model for modelling animal population
dynamics. However as an abstraction it has proven very useful, helping scientists to
establish a conceptual approach and ask the right questions [Mur02]. It is in this spirit
that models of intracellular dynamics are, or should be, developed in systems biology. The
systems considered here are frequently used for an introduction to differential equations.
The prototypical biological example of a regulatory system is the protein synthesis model
of Jacob and Monod [JM61]. The conceptual model explains how the production of mRNA
(x1), is feedback controlled by a repressor (x3). A simplified pathway map of this process
is shown in the following diagram:

DNA
(gene)

transcription
mRNA (x1)

translation
enzyme (x2)

precursor
“substrate”

enzymatic
reaction

co-repressor (x3)
“product”
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A differential equation model of this regulatory mechanism of protein synthesis is:

d

dt
x1 =

k1

k2 + k3x3(t)
− k4x1(t)

d

dt
x2 = k5x1(t)− k6x2(t)

d

dt
x3 = k7x2(t)− k8x3(t) .

For each of these equations, the last term describes degradation of the molecules. k5 is the
rate of synthesis for the protein that facilitates the production of the co-repressor. Note
that there is no minus sign to indicate the negative feedback as in previous examples.
The greater x3 in the numerator of the first term of the rate equation for x1, the smaller
its contribution towards the rate of change of x1. In contrast to the previous example
where the feedback was linear, i.e., a simple additive or negative term, in this example the
feedback is nonlinear. To illustrate the use of block-diagrams more clearly, let us consider
the block-diagram for the Jacob-Monod model of protein synthesis.

x1

k4

−

k5
x2

k6

−

k7

x3

k8

−

k1

k2 + k3x3(t)

We are now alerted to the fact that negative feedback does not necessarily coincide with an
explicit form of negative feedback loop. Specifically, we have in the block diagram arbitrarily
chosen to arrange the figure such that x3(t) appears as the term fed-back to x1(t) and
that because of the nonlinear form of the feedback it will in fact for small perturbations
be negative. The arbitrary nature of the feedback variable is because there is no explicit
control input. In such autonomous systems, it is the physical/biological structure that will
determine what we (the analyst) chose to call the feedback signal. When the differential
equation for x1 is linearized by Taylor series expansion the x3(t) appears as a negative
feedback term. Whether or not linearization is feasible depends on the system considered.
A more comprehensive discussion of this system and further references can be found in
[Mur02].

In the block diagram above we have also noticed that degradation is represented by
an integrator with a negative feedback loop around it. This motif we can summarize into
a single block:

k

− ⇒
k

Note that this is not just an arbitrary graphical simplification, the inner structure of the
block remains unambiguously defined. That is, we do not lose information or accuracy
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in presentation by scaling the block diagram in this way. Finally, the protein synthesis
model can be simplified to

x1

k4 k5
x2

k6 k7

x3

k8

k1

k2 + k3x3(t)

Although the systems we have considered here are fairly simplistic, the consequences
of feedback loops we have observed remain akin for more complex processes. For a related
instructive discussion of the dynamic systems approach in biochemical pathway modelling
we recommend [TO78, F+02, TCN03].

6.4 Discussion

Although a pathway or pathway map describes molecules, their physical state and inter-
actions, it is an abstraction, with no physical embodiment. A pathway map is thus a
model; which proteins and what physical states of the molecules should be considered for
experiments and the model is what we call the art of modelling.

Feedback loops are the essence of control and regulation, for only if information about
the consequences of some output is fed back, the system can adjust itself or respond in an
appropriate way. Using ordinary differential equations to model biochemical networks, we
have shown that feedback loops can stabilize and destabilize a system, keep its variables
and signals bounded, they can make the system robust against perturbations, they allow
the system to adapt to changes, or track an input stimulus.

Another relevant feature of control systems is that they have specific intent, and con-
trol systems analysts have theories for understanding intent and methods for achieving a
required intent or purpose [YHS00]. In a modelling framework, the causal structure of a
control system provides a framework for the dynamical manipulation of information with
a purposeful objective. This is topical and relevant in the light of recent discussion of the
value of systems biology compared with mathematical biology [Lan04]. In this same spirit,
feedback loops lie at the heart of the causal/purposeful mechanisms of control and regu-
lation in dynamic systems. Specifically, it is only if information about the consequences
or some output is fed back, can the system automatically adjust itself or respond in an
appropriate way. Feedback is not always beneficial, for feedback loops can stabilize or
destabilize a system. Feedback can keep a system’s variables and signals bounded, or it
can induce oscillations or unbounded growth. Likewise, feedback loops can make a system
robust against perturbations, but at the same time they allow the system to adapt to
changes, or track an input stimulus.

Apart from the role of feedback loops, we surveyed alternative and complementary rep-
resentations and visualizations, including the biochemist’s reaction equations, the math-
ematician’s differential equation models, the control engineer’s block diagrams and the
biologist’s pathway maps. Block diagrams are well established in the engineering sciences
as a means of describing dynamic systems in general. Through the integrators used, these
diagrams are inherently linked to differential equation models and are therefore less general
than those molecular interaction maps [A+04], commonly used to visualize relationships
in pathways. On the other hand, block diagrams are a direct and unambiguous visualiza-
tion of the mathematical model. These diagrams also do not explicitly represent spatial
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aspects. While the transport of a protein from the nucleus to the cytosol can be modelled,
compartments are realized by introducing more than one variable in the model for the
same molecular species in different regions of the cell. For the analysis of the nonlinear
differential equations models we only used time plots. Visualization is no less important
to theoreticians than it is to biologists and so there are a range of tools available we have
not mentioned here, including stimulus-response curves, phase-plane and bifurcation anal-
ysis (e.g. [GH83, KG95, Mur02, TCN03]). For an application of these mathematical tools
applied to a model of the yeast cell cycle, we refer to the expositions of Novak and Tyson
[Tys01, TN01, TCN03]. The building block approach to an understanding of systems,
when associated with purpose, is very similar to the causality principles that are embed-
ded in the dynamical system modelling methods of control engineering. One question
we investigated here was whether the control engineer’s proficiency with block diagram
models and modular representations can contribute to systems biology by facilitating the
translation of biological concepts into mathematical representations.

The cell is made up of molecules, like a car is made up from plastic and metal. But a
soup of molecules is no more a cell than a heap of plastic and metal is a car. To understand
the functioning and function of a cell we need to know the relations and interactions of
the components that constitute it. If the central dogma of systems biology is that it is
dynamics that determines biological function, we would refine this statement and argue
that the dynamical manifestation of feedback determines the development and maintenance
of biological processes.

6.5 Phase-Plane Analysis

Phase-plane analysis is an important technique in studying the behavior of linear and
nonlinear dynamic systems. It is a graphical approach which allows the study of the
behavior of the system for a large range of initial conditions. It is for this reason that
this method is referred to as providing a qualitative analysis of the dynamic system. For
linear systems the approach is truly global, while for nonlinear systems it is only locally
applicable. The main purpose of this section is to illustrate the diversity of behavior
nonlinear dynamics can generate and to introduce a tool for its analysis in the plane.
For a more comprehensive description of phase-plane analysis see one of the many books
available on differential equations (e.g. [BD01, EP01]).

The general form of systems considered for phase-plane analysis is

dx

dt
= f(x, y) ,

dy

dt
= g(x, y) . (6.3)

A system in which t does not explicitly occur in f and g is called an autonomous system.
The two differential equations determine the velocity of two variables x and y moving in
the xy-plane referred to as the phase-plane. As time increases, the system state moves
along a curve in the xy-plane, called the trajectory. While for non-autonomous systems
trajectories could cross in the plane, for autonomous systems the trajectories cannot cross.
The totality of all trajectories describes the phase portrait. Points (x, y) of the trajectory
for which

f(x, y) = g(x, y) = 0

are called critical points or fixed points, often also referred to as stead-states or equilibrium critical point

points2. To see the appearance the phase portrait, we consider a direction field on a grid

2In the engineering literature fixed points are also referred to as equilibrium points. In the context of
biochemical networks in cells this can however lead to confusion.
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of points in the R2 plane and determine velocity vectors defined by

dy

dx
=

dy
dt
dx
dt

=
g(x, y)

fg(x, y)
.

As a first simple example let us consider the system

dx

dt
= y and

dy

dt
= 4x .

The only fixed point for this system is the origin, (0, 0), of the plane. We can solve the
system by separation of variables:

dy

dx
=

dy
dt
dx
dt

=
4x

y

which implies
∫

y dy =

∫

4x dx i.e.,
y2

2
= 2x2 + c

leading to trajectories that are hyperbolas:

4x2 − y2 = c .

The phase-plane and some sample solutions are shown in Figure 6.5.
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Fig. 6.5: Left: Phase portrait of the system dx/dt = y, dy/dt = 4x. The fixed point (0, 0)
is said to be unstable because trajectories close to the fixed point move away from it. From
the appearance of graph, the fixed point is also referred to as a saddle point. Right: Sample
solutions for x(t).

A second motivating example, leading to trajectories that are circles is

dx

dt
= y and

dy

dt
= −x ,

The only fixed point is again (0, 0). By separation of variables

dy

dx
=

dy
dt
dx
dt

=
−x

y

which implies
∫

y dy =

∫

−x dx i.e.,
y2

2
=
−x2

2
+ c
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Fig. 6.6: Phase portrait of the system dx/dt = y, dy/dt = −x. The fixed point (0, 0) of
this system is stable, i.e., all trajectories close to it remain close for all t. This fixed point is
called a centerpoint.

leading to circular trajectories:
x2 + y2 = c .

The phase-portraits is shown in Figure 6.6.

From these two examples we now consider a more comprehensive survey of linear
dynamics, followed by nonlinear systems. If the derivatives are linear functions of the
variables, we deal with a linear (autonomous) system:

dx

dt
= a · x + b · y

dy

dt
= c · x + d · y







(6.4)

In matrix form we can rewrite this system as

[
ẋ
ẏ

]

=

[
a b
c d

] [
x
y

]

.

The matrix

A =

[
a b
c d

]

is called the system matrix of coefficients. If the determinant of A

det(A) ≡ |A| = ad− bc ,

is nonzero, there is a unique solution to the equations. For a linear system, the origin of
the phase-plane is this fixed point. If det(A) = 0 there either aren’t any solutions or there
are infinitely many. In this case have to solve the system of linear algebraic equations

a · x + b · y = 0

c · x + d · y = 0 .

The solutions to the linear system differential equations are

[
x
y

]

= c1~v1e
λ1t + c2~v2e

λ2t ,

where ~v1 and ~v2 are the eigenvectors of matrix A corresponding to eigenvalues λ1 and eigenvalues/vectors
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λ2 of A. The eigenvectors and eigenvalues are found by asking whether there are exists
a nonzero vector ~v such that the result A~v is a simple scalar multiple of ~v. With the
eigenvalues on the diagonal of a diagonal matrix Λ and the corresponding eigenvectors ~v
forming the columns of a matrix L, we have

AL = ΛL

If L is nonsingular3, this becomes the eigenvalue decomposition of A:

A = LΛL−1 .

The eigenvectors and values have a geometric interpretation. The length |A~v| of vector
A~v is ±λ|~v|. The multiplication of ~v by the matrix A expands or contracts vector ~v, while
a positive eigenvalue preserves its direction, a negative value reverses it. In application of
dynamic systems in the plane, the eigenvalue corresponds to the speed of response, while
the eigenvector determines the principal direction. A line in the phase-plane that is not
crossed by any trajectory is called a separatrix. Eigenvectors determine the separtrices.

The eigenvalues λ1 and λ2 of A are determined as solutions of the characteristic equa-
tion

det(A− λI) = det

[
a− λ b

c d− λ

]

= 0

where I is the identity matrix with ones on the diagonal and zeros elsewhere. The eigen-
values are thus the roots of the characteristic polynomial det(A− λI)

(a− λ)(d− λ)− bc = λ2 − (a + d)λ + (ad− bc) = 0 .

The constant term is equal to det(A) and the coefficient (a + d) corresponds to the trace
of A, denoted tr(A). Let A = [aij ] be an n× n matrix, the trace of A is defined to be the
sum of the diagonal entries tr(A) =

∑n
i=1 aii. The eigenvalues are then given by

λ1,2 =
1

2

(

tr(A)±
√

(tr(A))2 − 4 det(A)

)

=
1

2

(

(a + d)±
√

(a + d)2 − 4(ad− bc)

)

.

Given the eigenvalues, the eigenvectors can be calculated by

~vi =
1

√

1 + p2
i

[
1
pi

]

where

pi =
λi − a

b
, b 6= 0, i = 1, 2 .

The sign of tr(A)2 − 4 det(A) determines whether the eigenvalues:

1. are complex with nonzero imaginary part if tr(A)2 − 4 det(A) < 0

2. are real and distinct if tr(A)2 − 4 det(A) > 0

3. are real and repeated if tr(A)2 − 4 det(A) = 0.

If in the first case tr(A)2−4 det(A) < 0, then the real part of the eigenvalues is tr(A/2) ≡
(a + d)/2, determining a

3A matrix is singular if its determinant is zero. It is regular if the determinant is nonzero, and in which
case an inverse exist.
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... spiral sink if tr(A) < 0

... spiral source if tr(A) > 0

... center if tr(A) = 0.

If for the second case above (tr(A))2 − 4 det(A) > 0, if det(A) < 0 we have a saddle and
for tr(A) > 0 and det(A) > 0 we have a source. In terms of the eigenvalues of matrix A
we can distinguish four cases, discussed hereafter.
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Fig. 6.7: Left: Phase portrait of the system dx/dt = −2x+y, dy/dt = x−2y. Right: Sample
solutions for x. Eigenvalues λ1 = −3, λ2 = −1. The critical point (0, 0) is called a nodal
sink. It is asymptotically stable node.

Case 1: Unequal, real eigenvalues of the same sign: The general solution of (6.4)
is

[x y]T = c1~v1e
λ1t + c2~v2e

λ2t .

The eigenvalues can be either positive or negative. In Figure 6.7 the case for

A =

[
−2 1
1 −2

]

with λ1 < λ2 < 0 is shown. From the general solution we see that both variables approach
zero as time goes to infinity, regardless of the constants c1 and c2. This means that all
solutions approach the critical point at the origin as t→∞. The eigenvectors are in this
case ~v1 = [0.71 − 0.71]T and ~v2 = [0.71 0.71]T , forming a cross through the origin.
Notice that all solutions approach the critical point tangent to ~v2, except those solutions
that start on the line through ~v1. This critical point is called a node or nodal sink. If λ1

and λ2 are both positive and 0 < λ2 < λ1, the trajectories in the phase-plane have the
same pattern as in Figure 6.7 but they are moving away from the critical point. x(t) and
y(t) grow exponentially in this case. The critical point is, in this case, called nodal source.

Case 2: Unequal, real eigenvalues of the opposite sign: The general solution of
(6.4) is again

[x y]T = c1~v1e
λ1t + c2~v2e

λ2t .

In Figure 6.8 the system with matrix

A =

[
1 1
4 1

]

is illustrated. The eigenvectors for this system are ~v1 = [0.45 0.89]T and ~v2 = [−0.45 0.89]T .
The eigenvectors are again forming a cross through the origin. If a solution starts on the
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Fig. 6.8: Left: Phase portrait of the system dx/dt = x + y, dy/dt = 4x + y. Right: Sample
solutions for x. Eigenvalues λ1 = 3, λ2 = −1. The critical point (0, 0) is called a saddle
point.

line along ~v1 (which goes from the bottom left to top right corner of the plane), it will
remain there for all time and c2 = 0. The only solutions that approach the critical point in
the origin are those that start on the line determined by ~v2. For all other initial conditions
the positive exponential term in the solution will eventually dominate. The origin is called
a saddle point. The origin is also an unstable fixed point since no solution will remain
there.
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Fig. 6.9: Left: Phase portrait of the system dx/dt = x, dy/dt = y. Right: Sample solutions
for x. Eigenvalue λ = 1. The critical point is called a proper node.

Case 3: Equal eigenvalues: In case λ1 = λ2 = λ, we have to distinguish two cases.
Two independent eigenvectors: The general solution is

[x y]T = c1~v1e
λt + c2~v2e

λt .

In this case the ratio y/x is only dependent on ~v1, ~v2 and independent of t. The trajectories
generate a star-shaped pattern of the phase-plane. The fixed point is called a proper
node or star point. Figure 6.9 illustrates a system with eigenvectors ~v1 = [1 0]T and
~v2 = [0 1]T . The node is asymptotically stable or unstable, depending on whether the
eigenvalue is negative or positive. One independent eigenvector: The general solution
is in this case

[x y]T = c1~v1e
λt + c2(~v1te

λt + ~v2e
λt)

where ~v1 is the one independent eigenvector and ~v2 denotes the generalized eigenvector
associated with the repeated eigenvalue. For a large t the dominant term is c2~v1te

λt,
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Fig. 6.10: Left: Phase portrait of the system dx/dt = x− y, dy/dt = x + 3y. Right: Sample
solutions for x. Eigenvalue λ = 2. There is only one independent eigenvector. The critical
point is called an improper node.

which means that for t → ∞ all trajectories approach the origin tangent to the line
through the eigenvector. The orientation of the trajectories depends on the relative po-
sitions of ~v1 and ~v2. Figure 6.10 illustrates one situation for a system with eigenvectors
~v1 = [−0.71 0.71]T and ~v2 = [−0.71 0.71]T . When a repeated eigenvalue has only one
independent eigenvector, then the critical point is called an improper node or degenerate
node. An improper node is asymptotically stable or unstable, depending on whether the
eigenvalue are negative or positive.
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Fig. 6.11: Left: Phase portrait of the system dx/dt = −0.5x + y, dy/dt = −x− 0.5y. Right:
Sample solutions for x. Eigenvalues λ1 = −0.5 + i1, λ2 = −0.5 − i1. Since the real part is
negative the trajectories spiral inwards.

Case 4: Complex eigenvalues: In this case the eigenvalues are a±ib, where a is the real
part and b denotes the imaginary part. The critical point is called a spiral point, spiral
sink or spiral source. Whenever a 6= 0, the trajectories are spirals. They are directed
inward or outward, depending on whether a is positive or negative. Figures 6.11 and 6.12
provides an illustration.

Case 5: Pure imaginary eigenvalues: In case a = 0 for the eigenvalues, the trajectories
become circles around the origin, that are traversed clockwise if b > 0 and anticlockwise
if b < 0. Figure 6.6 provides an illustration for the system dx/dt = y, dy/dt = −x, with
eigenvalues 0± i.

We have summarized the dynamic properties or stability of the linear system [x y]T =
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Fig. 6.12: Left: Phase portrait of the system dx/dt = 4x − 3y, dy/dt = 3x + 4y. Right:
Sample solutions for x. Eigenvalues 4 ± i3. Since the real part is positive the trajectories
spiral outwards.
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Fig. 6.13: Illustration of an autonomous nonlinear system, which is almost linear around
the origin but displays a limit cycle.

A[x y]t in Table 6.1. Before we continue with study nonlinear dynamics using phase-plane
analysis, we look at a particular nonlinear autonomous system which is almost linear
around the origin:

dx

dt
= y + x− x(x2 + y2)

dy

dt
= −x + y − y(x2 + y2) .

The only critical point of this system is the origin (0, 0). The corresponding linear system
has the system matrix

A =

[
1 1
−1 1

]

.

and eigenvalues 1 ± i, which suggests the origin is an unstable spiral point for the linear
as well as the nonlinear system. However, rather than spiralling out completely, as the
linear analysis would suggest, the system exhibits what is known as a limit cycle. Figure
6.13 illustrates the limit cycle behavior.
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Table 6.1: Stability of the linear system [x y]T = A[x y]T with det(A) 6= 0.

Eigenvalues Type of Critical Point Stability
λ1 > λ2 > 0 Node Unstable
λ1 < λ2 < 0 Node Asymptotically stable
λ2 < 0 < λ1 Saddle point Unstable
λ1 = λ2 > 0 Proper or improper node Unstable
λ1 = λ2 < 0 Proper or improper node Asymptotically stable

λ1, λ2 = a± ib Spiral point
a > 0 Unstable
a < 0 Asymptotically stable

λ1 = ib, λ2 = −ib Center Stable

6.6 Nonlinear Dynamics

As a motivating example for nonlinear systems let us find the trajectories of the following
system with two coupled nonlinear equations:

dx

dt
= 4− 2y ,

dy

dt
= 12− 3x2 .

To find critical points we set the derivatives to zero:

4− 2y = 0 , 12− 3x2 = 0

and find that there are two critical points at (−2, 2) and (2, 2). For the trajectories we
write

dy

dx
=

12− 3x2

4− 2y
.

Separation of variables and integration provides us with the solution

4y − y2 − 12x + x3 = c

where c is some arbitrary constant. Figure 6.14 illustrates the phase portrait.

−4 −2 0 2 4

−4

−2

0

2

4

6

8

x

y

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

6

8

time

x

Fig. 6.14: Phase portrait of the nonlinear system dx/dt = 4 − 2y , dy/dt = 12 − 3x2.

The phase-plane analysis introduced above does work for nonlinear systems by lineariz-
ing a system around a point of interest. The analysis in this case applies locally. Points
of particular interest are critical- or fixed points. Let us denote such point of particular
interest in the plane as (x∗, y∗).

Linearizing a nonlinear system is done in the neighborhood of the fixed points using
a Taylor expansion of f(x, y) and g(x, y). The Taylor expansion for a function of two Taylor expansion
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variables f(x, y) is given by

f(x, y) = f(x∗, y∗) +
∂f

∂x

∣
∣
∣
∣
x∗,y∗

(x− x∗) +
∂2f

∂x2

∣
∣
∣
∣
x∗,y∗

(x− x∗)2

2!
+

∂3f

∂x3

∣
∣
∣
∣
x∗,y∗

(x− x∗)3

3!

+
∂f

∂y

∣
∣
∣
∣
x∗,y∗

(y − y∗) +
∂2f

∂y2

∣
∣
∣
∣
x∗,y∗

(y − y∗)2

2!
+

∂3f

∂y3

∣
∣
∣
∣
x∗,y∗

(y − y∗)3

3!
+ · · ·

(6.5)

If we neglect terms higher than first order the Taylor expansion is

f(x, y) ≈ f(x∗, y∗) +
∂f

∂x

∣
∣
∣
∣
x∗,y∗

(x− x∗) +
∂f

∂y

∣
∣
∣
∣
x∗,y∗

(y − y∗) . (6.6)

Introducing new variables u, v,

u
.
= x− x∗ , v

.
= y − y∗ ,

we can write for the expansion of (6.14),

du

dt
= au + bv + · · · ,

dv

dt
= cu + dv + · · · ,

(6.7)

where

a =
∂f

∂x

∣
∣
∣
∣
x∗,y∗

, b =
∂f

∂y

∣
∣
∣
∣
x∗,y∗

,

c =
∂g

∂x

∣
∣
∣
∣
x∗,y∗

, d =
∂g

∂y

∣
∣
∣
∣
x∗,y∗

.

(6.8)

The trick is then to assume that in the neighborhood of the fixed points, the higher-order
terms in (6.7) are small enough to be neglected. If we collect the partial derivatives in
matrix form this leads us to what is called the Jacobian matrix :Jacobian matrix

J∗ =






∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y




 , (6.9)

with the partial derivatives evaluated at (x∗, y∗), treating in each case the other variable
as a constant. Therefore in the neighborhood of a fixed point, the nonlinear system (6.14)
can be approximated by the set of linear equations

[
u̇
v̇

]

=

[
a b
c d

] [
u
v

]

. (6.10)

The dynamics in the neighborhood of (x∗, y∗) are now determined by the eigenvalues of
the system matrix, as illustrated above.

For more examples, we return to the population models referred to earlier in the text.
On page 42 of Chapter 3 we considered a simple population model

dS(t)

dt
= (k+ − k−)S(t) , (3.5)

where S(t) denotes the molecular population size at time t, k+ the formation or birth rate
and k− the decay or death rate. In systems and control theory or the study of differential
equations such model is more commonly written using the following notation

dx(t)

dt
= u(t)x(t) , (6.11)
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where u(t) may be considered a control input variable. Because of the product of the state
variable and input variable, u(t)x(t) , such a system is also called a bilinear system, andbilinear system

which is an example of the more general system

ẋ = φ
(
t, x(t)

)
+ u(t)g

(
t, x(t)

)
, x(t0) = x0

y(t) = h
(
t, x(t)

)
.

(6.12)

In many realistic situations u(t) may depend on x(t), which in effect leads to some pop-
ulation constraints. A simple example of such a feedback control loop is the following
definition for u

u
(
x(t)

)
= a− bx(t) ,

where for a population model, a may be considered as the intrinsic growth rate such
that a/b corresponds to the maximum population level that can be reached [Ton90]. The
input-output description and the description of feedback loops is central to the control
engineering approach.

We can extend the idea of the bilinear formulation (6.11) to two molecular species x
and y,

dx

dt
= u1(x, y)x ,

dy

dt
= u2(x, y)y , (6.13)

where the dependence on t is suppressed to simplify the notation. If we define

u1(x, y) = α− βy

u2(x, y) = γx− δ ,

we obtain the well known Lotka-Volterra model. This model has been rather useful,
certainly for educational purposes. We encountered this system in Section 4.3, on page
98 and will further discuss it hereafter. But first let us consider the phase-portrait of a
bilinear system with u1(x, y) = y + y/x and u2(x, y) = x + 3x/y:

dx

dt
= xy + y

dy

dt
= xy + 3x .

The system has two critical points, a trivial fixed point (x∗
1, y

∗
1) at (0, 0) and another at

(x∗
2, y

∗
2) = (−1,−3). The Jacobian matrix is

J∗ =

[
y∗2 x∗

1

y∗2 + 3 x∗
1

]

.

Considering first the trivial fixed point. The eigenvalues are λ1 = −
√

3, λ2 =
√

3, with
associated eigenvectors ~v1 = [−0.5 0.866]T and [0.5 0.866]T . For the nontrivial fixed point
the eigenvalues are λ1 = −3, λ2 = −1, with associated eigenvectors ~v1 = [1 0]T and [0 1]T .
Figure 6.15 illustrates the two phase-portraits of the system linearized around the critical
points and Figure 6.16 shows the combined phase portrait of the nonlinear system.

What the Lotka-Volterra model is for the theoretician is the enzyme kinetic reaction
for the experimentalist. The vast majority of biochemical reactions in a cell are catalyzed
by enzymes. This type of reaction is therefore of particular interest in modelling and in
experiments. We first introduced this system on page 81 and 166 and will have a detailed
discussion of this reaction in Section 8.2. The biochemists diagrammatic representation is

E + S
k1−→←−−
k2

ES
k3−→ E + P
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Fig. 6.15: Phase portrait of the nonlinear system xy + y , dy/dt = xy + 3x, around the
critical points (0, 0) on the left and (−1,−3) on the right.
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Fig. 6.16: Left: Phase portrait of the nonlinear system dx/dt = xy + y , dy/dt = xy + 3x.
Right: sample solutions.

where substrate S is under the action of enzyme E turned first into an intermediate
complex ES before further decomposed into a product P and the enzyme. The mass
action kinetic equations for changes in the concentrations of the substrate and complex
are

d[S]

dt
= −k1[S][E] + k2[ES],

d[ES]

dt
= −(k2 + k3)[ES] + k1[S][E] .

Since the enzyme is, in a sense, controlling the reaction, we may consider it as an input to
the system. Rewriting these equations, using input variable u and state variables x1 and
x2 for substrate and complex respectively, gives us the following compact representation
that emphasizes an input-output representation and where state-variables and inputs are
bilinearly related:

ẋ1 = −k1x1u + k2x2,

ẋ2 = −(k2 + k3)x2 + k1x1u .

Let us continue with a closer look at the predator-prey model for two competing or
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Fig. 6.17: Time series plot of the Lotka-Volterra system for α = 2, β = 0.002, γ = 0.0018,
δ = 2 and initial conditions x(0) = 300, y(0) = 300. The solid line is for the prey population,
x(t), and the dashed line represents the predator population, y(t).

interacting populations, introduced by Lotka and Volterra:

dx

dt
= αx− βxy ,

dy

dt
= γxy − δy ,

(6.14)

where x, y ≥ 0, and α, β and δ are all positive constants. In (6.14) variable x is to represent
the prey population and y the predator population. The structure of the Lotka-Volterra
equations imply that in the absence of predators, the prey population will grow unbounded
and in the absence of any prey, the predators will be extinguished. δ denotes the natural
death rate of the predator and the term involving β describes the death of prey as being
proportional to the encounters with predators.
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Fig. 6.18: Phase plane (left) and integral curve (right) of the Lotka-Volterra equations,
(6.14).

Figure 6.18 shows two visualizations of the dynamic behavior to the Lotka-Volterra
system. The x-isoclines is described by those points in the phase-plane for which dx/dt = isocline

0, i.e.,
f(x, y) = αx− βxy = 0

which is true for
x = 0 and y =

α

β
.
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function lotkavolterra

delta = 2; gamma = 0.0018; alpha = 2; beta = 0.002;

x0 =300; y0 = 300; % Initial conditions. x: prey, y: predator

tspan = [0 15]; % Simulation time.

% ODE solver for numerical solution:

options = odeset(’RelTol’,1e-9,’AbsTol’,1.e-9,’Refine’,8);

[t,z] = ode45(@LV,tspan,[x0 y0],options,delta,gamma,alpha,beta);

plot(t,z(:,1),t,z(:,2)); % Plot time series.

plot(z(:,1),z(:,2)); % Trajectory in phase-plane.

plot3(z(:,1),t,z(:,2)); % Integral curve.

zlabel(’predator’); ylabel(’time’); xlabel(’prey’);

% Subfunction for LV equations:

function dzdt = LV(t,z,delta,gamma,alpha,beta)

% z(1) : prey, z(2) : predator

dzdt = [alpha*z(1)-beta*z(1)*z(2); gamma*z(1)*z(2)-delta*z(2)];

Fig. 6.19: Matlab function to simulate the Lotka-Volterra equations.

These are two lines, equal to the y-axis going through the origin and a horizontal line at
height α/β. The y-isoclines is defined in the same fashion,

g(x, y) = γxy − δy

which is true for

y = 0 and x =
δ

γ
.

These are again two perpendicular lines. There are two points of intersection between the
x-isoclines and y-isoclines. There are therefore two fixed points for the system. The first
fixed point is the origin of the plane, where x = y = 0. The second fixed point is given
by y = α/β, x = δ/γ, which is a point at which the two populations are balanced so that
there is no change to either population.
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Fig. 6.20: Visualization of the flow of the Lotka-Volterra equations. The horizontal second
x-isocline and vertical second y-isocline are shown as dotted lines. The fixed point lies where
the isoclines meet. The first isoclines are the axis of the plot going through the origin.

Plotting trajectories in the phase-plane, as in Figure 6.18, requires a software tool for
numerical integration (Figure 6.19). A quick way to visualize the flow of a two-dimensional
nonlinear systems is to plot for a grid of (x, y)-values the gradient dy/dx as an arrow as
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shown in Figure 6.20, plotted using the few lines of Matlab code in Figure 6.21. As an
exercise, you may want to explain why the trajectories in Figure 6.18 are not circles or
ellipsoids?

[X,Y] = meshgrid(linspace(0,3000,15));

dx = alpha.*X - beta.*X.*Y;

dy = gamma.*X.*Y - delta.*Y;

quiver(X,Y,dx,dy,1.5);

xlabel(’prey’); ylabel(’predator’);

Fig. 6.21: Matlab function to visualize the flow of the Lotka-Volterra system.
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Fig. 6.22: Left: The flow of the Lotka-Volterra system, (6.14), with parameters β = γ = 2,
α = δ = 1. Right: stable focus for a = −1, b = −1, c = 1.9, d = −1, which leads to
eigenvalues λ1 = −1 + i1.378, λ2 = −1 − i1.378.

For the Lotka-Volterra system, (6.14), the fixed points occur at x∗ = 0, y∗ = 0 and at
x∗ = δ/γ, y∗ = α/β. The constants of the system, linearized at (x∗, y∗), are

a =
∂f

∂x

∣
∣
∣
∣
x∗,y∗

= α− βy∗ , b =
∂f

∂y

∣
∣
∣
∣
x∗,y∗

= −βx∗ ,

c =
∂g

∂x

∣
∣
∣
∣
x∗,y∗

= γy∗ , d =
∂g

∂y

∣
∣
∣
∣
x∗,y∗

= γx∗ − δ .

(6.15)

For the fixed point at the origin, a = α, b = 0, c = 0, d = −δ, such that the eigenvalues
are

λ1 = α , λ2 = −δ .

Since α and δ are positive, this fixed point is a saddle point, i.e., trajectories going towards
it will drift off just before it. For the predator-prey model this means that even if the
populations get near the extinction point, the populations will eventually grow again. For
the second fixed point, we have a = 0, b = −βδ/γ, c = γα/β, d = 0. The eigenvalues are

λ = ±
√
−αδ .

Taking the square root of a negative number will lead to a complex number. The eigen-
values are therefore both imaginary numbers, which implies that the predator and prey
populations oscillate around the fixed point, as can be seen well in Figure 6.20.

This section could only serve as a rudimentary introduction to nonlinear modelling.
Other more comprehensive books at introductory level are [Str00b], and [JS99]. The book
by Kaplan and Glass [KG95] is particularly suitable for biologists. Advanced texts are
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Fig. 6.23: Left: stable node of the linearized system, (6.10), with parameters taken from
[KG95]: a = −1.5, b = 1, c = 1, d = −1.5, leading to λ1 = −2.5, λ2 = −0.5. Right:
saddle point of the linearized system, (6.10), for for a = 1, b = 1, c = 1, d = −1, leading to
eigenvalues λ1 = −

√
2, λ2 =

√
2.

[Wig03] and [GH83]. The control engineering perspective of nonlinear systems is described
in [Nv90], [Isi89], and [Sas99], all of which are advanced texts. The standard text on
mathematical biology by Murray [Mur02] is an excellent source of examples for nonlinear
modelling, applied to biological systems.

7 Receptor Modelling

In this section we pick up the thread of Section 2.2 and discuss in greater detail a math-
ematical model of cell surface receptor binding. A comprehensive study of receptors,
models for binding, trafficking and signaling was first provided in [LL93]. Receptors are
most commonly found at the cell surface, where extracellular signaling molecules, the lig-
and, can bind to them. Signaling proteins include cytokineses, insulin, hormones or growth
factors, which could for example be transported through the blood stream. The binding
process leads to a transmission of the signal into the cell where it can affect various pro-
cesses, including the transcription of genes, which in turn can control various important
cell functions.

We begin with a basic model for cell surface receptor binding, using the reversible
bimolecular reaction

L + R
ka−→←−−
kd

C ,

where R and L denote the free receptor of a cell and ligand molecules, respectively and C
denotes the LR complex, i.e., receptors that are “occupied”. ka is the velocity at which
ligands bind to receptors and kd describes the dissociation rate. We refer to receptor
and ligand as monovalent to assume that at any time only one ligand and one receptormonovalent binding

molecule form a complex. For a single cell, the mass action model that describes temporal
changes in the number of LR complexes is

dC

dt
= kaR[L]− kdC , (7.1)

where [L] gives the free ligand concentration in moles per liter of the medium; R is the
number of free receptor per cell (#cell), C the number of receptor-ligand complexes per
cell , kd and ka are in M−1 and M−1sec−1, respectively. The number of receptors or
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Fig. 7.1: The figure illustrate the three most common kinds of cell surface receptors and
mechanisms for their activation.

complexes per cell can be converted into a concentration (moles per volume solution) or
density (#cell surface area) if necessary. To check the units of (7.1) we have

1

cell · sec =
1

M · sec ·
1

cell
·M− 1

sec
· 1

cell
.

Equation (7.1) has three variables, C, L, and R. A reasonable assumption to simplify the
analysis is that the total number of surface receptors, denoted RT , is constant:

RT = R + C , (7.2)

leading to an equation in two variables:

dC

dt
= ka(RT − C)[L]− kdC . (7.3)

The ligand concentration is determined by the initial concentration minus the ligands
bound in complexes, L = L0−C. Furthermore, in most experimental set-ups we are going
to have n cells in the medium to which also the concentration of the ligand refers. This
means that we ought to multiply C (given in #/cell) by n. Furthermore, since C is a
count per cell, we turn the concentration of L, given in mol/liter, into a count of numbers
by multiplying with NA the Avogadro constant (#/mol):

[L] = L0 −
(

n

NA

)

C , (7.4)

where we write for the initial concentration of L, [L](t = 0) = L0. The brackets are
therefore left to simplify the notation. Inserting the two conservation assumptions (7.2)
and (7.4) into (7.1) gives us a single differential equation to describe the receptor-ligand
binding process:

dC

dt
= ka(RT − C)

(

L0 −
n

NA
C

)

− kdC (7.5)

= kaRT L0 − kaRT
n

NA
C − kaL0C + ka

n

NA
C2 − kdC .

Rewriting this equation we recognize it as an inhomogenous second-order differential equa-
tion:

dC

dt
+

(

kaRT
n

NA
+ kaL0 + kd

)

C − ka
n

NA
C2 = kaRT L0 . (7.6)
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Negligible Ligand Depletion

In order to obtain a simpler differential equation than (7.6) we make further assump-
tions. To obtain a differential equation in only one variable, one could assume that ligand
depletion can be neglected and therefore replace L in (7.3) with L0:

dC

dt
= ka(RT − C)L0 − kdC . (7.7)

If we imagine there are initially no ligands bound, the assumption of negligible ligand
depletion implies that the initial concentration is much larger than the ligand bound in
complexes, i.e., (n/NA)C � L0. Alternatively we could have replaced L0 − (n/NA)C by
L0 in (7.5) to arrive at (7.7).

Let us now determine the solution to differential equation (7.7), by recognizing it as a
linear, inhomogeneous, first-order ordinary differential equation1

dC

dt
+ (kaL0 + kd)
︸ ︷︷ ︸

P (t)

C = kaRT L0
︸ ︷︷ ︸

Q(t)

. (7.8)

Such equations are solved by defining an integrating factorintegrating factor

ρ(t) = e
∫

P (t)dt

= exp

{∫

(kaL0 + kd) dt

}

= exp {(kaL0 + kd)t} .

The next step is to multiply both sides of (7.8) with ρ(t)

exp {(kaL0 + kd)t}
dC

dt
+ exp {(kaL0 + kd)t} (kaL0 + kd)C = exp {(kaL0 + kd)t} kaRT L0 .

We notice that the left-hand side is the derivative of the product C(t) · ρ(t), which is in
fact the whole idea behind the use of an integrating factor. We can thus write

ρ(t) · C(t) =

∫

ρ(t) ·Q(t)dt + c ,

where c is some arbitrary constant. Insert the expressions for ρ(t) and Q(t),

ρ(t) · C(t) =

∫

exp {(kaL0 + kd)t} · kaRT L0 dt + c

= kaRT L0

∫ t

0
e(kaL0+kd)t dt + c

=
kaRT L0

kaL0 + kd

(

e(kaL0+kd)t − 1
)

+ c ,

leading to

C(t) =
kaRT L0

kaL0 + kd
− kaRT L0

kaL0 + kd
e−(kaL0+kd)t + c · e−(kaL0+kd)t , (7.9)

1This is an ordinary differential equation since there is only a single independent variable, t. The
equation is linear since no terms such as C2 appear and it is first-order since only the first derivative dC/dt
appears. The homogenous version of (7.7) is obtained for kaRT L0 = 0. This special case would correspond
to the monomolecular reaction (3.2) on page 39.
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where 1/ρ(t) = exp{−(kaL0 + kd)t}. From the initial condition, C(t = 0) = C0, we can
determine the constant

C0 =
kaRT L0

kaL0 + kd
− kaRT L0

kaL0 + kd
+ c ,

i.e., c = C0, which inserted into (7.9), gives us the solution

C(t) = C0 exp {−(kaL0 + kd)t}+
kaRT L0

kaL0 + kd
(1− exp {−(kaL0 + kd)t}) . (7.10)

Equilibrium and Steady State

At equilibrium the reaction rates are equal equilibrium

ka[L]R = kdC ,

where the dissociation constant is defined (cf. page 19) as dissociation constant

Kd =
R[L]

C
=

kd

ka
,

where here we have for R = RT −C and [L](t = 0) = L0, from our assumptions (7.2) and
(7.4) above:

Kd =
(RT − C)L0

C
,

with unit M (mol per liter). Let us denote by Ceq the number of ligand-receptor complexes
at equilibrium,

Ceq =
RT L0

Kd + L0
. (7.11)

At steady state, dC/dt = 0, steady state

0 = ka(RT − C)L0 − kdC ,

leading to

C =
kaRT L0

kd + kaL0
=

RT L0

Kd + L0
.

The steady state value is therefore in this case identical to the number of receptor-ligand
complexes at equilibrium.

Dimensionless Representation

To visualize the solution (7.10) with a plot, we would have to specify the rate constants,
the initial ligand concentration, the total number of receptors and the initial number of
receptor-ligand complexes. The appearance of the plot may therefore vary considerably
for different values of these parameters. This can be avoided by not looking at C(t) but
plotting the dimensionless fraction of occupied receptors,

y =
C

RT
, (7.12)

where 0 ≤ y ≤ 1. For y = 0 all receptors are free (no complexes), and for y = 1 all
receptors are occupied. Let us furthermore introduce a scaled time, τ ,

τ = kdt . (7.13)
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Fig. 7.2: Left: Transient binding of ligands to cell receptors, where a bimolecular reaction
is used as a model, with ligand depletion assumed to be negligible and the total number of
receptors remaining unchanged. At t = 0, it is assumed that all receptors are free. Right:
The fractional occupancy of receptors at equilibrium.

Rewriting (7.7) first by dividing both sides by RT

d

dt

(
C

RT

)

= ka

(

1− C

RT

)

L0 − kd
C

RT
,

dy

dt
= ka(1− y)L0 − kdy ,

next taking account of (7.13) gives

dy

dτ
=

ka

kd
(1− y)L0 − y ,

=
L0

Kd
(1− y)− y . (7.14)

For the fractional occupancy of receptors, the transient changes are therefore described
by the following solution of (7.14)

y(τ) = y0 exp

{

−
(

1 +
L0

Kd

)

τ

}

+
L0/Kd

1 + (L0/Kd)

(

1− exp

{

−
(

1 +
L0

Kd

)

τ

})

, (7.15)

and the equilibrium value is determined by the ratio L0/Kd:

yeq =
L0/Kd

1 + (L0/Kd)
. (7.16)

See Figure 7.2 for an illustration of the transient binding of ligands to cell receptors. Note
that yeq = Ceq/RT and yeq = 0.5 when L0/Kd = 1, i.e., half the receptors are bound by
ligands at equilibrium when the ligand concentration is equal to the value of Kd.

Half-Time!

Taking a break before we continue with our model of ligand binding, we complete the
previous study by looking at the half-time of an experiment. Let us assume an experimenthalf time

with initial condition y0 = C0/RT = 0, i.e., initially no ligands are bound to the receptors.
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One definition for a half-time, τh, is for the transient solution y(τ) to reach half of the
change from y0 = 0 to yeq, y = 0.5yeq:

1

2
yeq = yeq

[

1− exp

{

−
(

1 +
L0

Kd

)

τh

}]

, (7.17)

1

2
= − exp

{

−
(

1 +
L0

Kd

)

τh

}

, (7.18)

−
(

1 +
L0

Kd

)

τh = ln
1

2
, (7.19)

such that

τh =
− ln 1/2

1 + L0/Kd
=

ln 2

1 + L0/Kd
≈ 0.69

1 + L0/Kd
. (7.20)

This half time is shown in the right-hand plot of Figure 7.2.

Alternatively, we may ask for the left-hand plot of y(τ) in Figure 7.2 for when y(τh) =
1/2. Considering again an initial value y(t = 0) = 0,

1

2
= yeq

[

1− exp

{

−
(

1 +
L0

Kd

)

τh

}]

,

1

2yeq
= 1− exp

{

−
(

1 +
L0

Kd

)

τh

}

,

exp

{

−
(

1 +
L0

Kd

)

τh

}

= −
(

1− 2yeq

2yeq

)

,

−
(

1 +
L0

Kd

)

τh = ln

(
2yeq − 1

2yeq

)

.

Since it must be possible for half of the receptors to be occupied, yeq ≥ 0.5.
(

1 +
L0

Kd

)

τh = − ln

(
2yeq − 1

2yeq

)

= ln

(
2yeq

2yeq − 1

)

,

τh =

(

ln
2yeq

2yeq − 1

)

·
(

1 +
L0

Kd

)−1

=
ln[2yeq/(2yeq − 1)]

1 + L0/Kd
.

Stimulus-Response Analysis

The previous study of receptor-ligand binding, based on equation (7.7), assumed that the
ligand concentration is more or less constant. The solution (7.10), respectively (7.15), can
be thus be interpreted as the response to a step-change in the ligand concentration. We
now return to equation (7.3) and consider different kinds of stimuli.

dC

dt
= ka(RT − C)[L]− kdC (7.3)

= kaRT [L]− kaC[L]− kdC ,

where both C and the ligand concentration [L](t) are a function of time. A check of the
units is quickly done for the last equation

#

cell · sec =
1

M · sec ·
#

cell
·M− 1

M · sec ·
1

cell
·M− 1

sec
· #

cell
.

To investigate the response in receptor binding to different forms of ligand stimulation we
again use the dimensionless variable y = C/RT , which represents the fraction of occupied
receptors

dy

dt
= ka[L]− kay[L]− kdy .
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Let us further scale time by introducing τ = t · kd, which means that the right-hand side
of the above equation is divided by kd

dy

dτ
=

ka

kd
[L]− ka

kd
y[L]− y .

For the reversible bimolecular reaction the equilibrium constant and dissociation constants
are defined as (cf. page 19)

Keq =
ka

kd
, Kd =

kd

da
,

such that we have

dy

dτ
=

1

Kd
[L]− 1

Kd
y[L]− y . (7.21)

In order to make this equation more appealing for the eye, we hereafter use x to denote
the stimulus L and replace the equilibrium constant by θ:

dy

dτ
= θx− θxy − y . (7.22)

This then is a nonlinear ordinary differential equations with one parameter θ and two
temporal variables x(t) and y(t).

We begin with a downward step-change

x(τ) =
α

1 + exp
{

τ−β
γ

} , (7.23)

where the parameters

α : determines the initial height,

β : defines the turning point of the curve,

γ : determines sharpness of the transition.

For γ → 0 we obtain the Heaviside step-function as illustrated in Figure 7.3. In Figure
7.4, on the left, the solution of (7.22) is shown for three different ratios of L0/Kd, α = 2,
β = 2.5 and γ = 0.2. The right-hand plot of Figure 7.4 shows the response to a downward
step with the slop of the change, γ, changing; L0/Kd = 10 and α and β as before. The
inverse of the “downward” or “negative” step, is the function

x(τ) =
α

1 + exp
{

−β
γ

} − α

1 + exp
{

τ−β
γ

} .

The response pattern to this stimulus are shown in Figure 7.5.

Next we consider an ‘impulse’-like function, which we represent by a gaussian function

x(τ) =
α

γ
· exp

{

−(τ − β)2

γ2

}

. (7.24)

The pre-factor α/γ is chosen in this way as to ensure the integral of the right-hand side
(i.e., the intensity) is constant. For α = 2, β = 2.5 and changing width, γ, the function is
shown in Figure 7.6 and the response pattern in Figure 7.7.
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Fig. 7.3: Left: Downward step-change stimulus x(τ) for different parameter values of γ;
α = 2, β = 2.5. Right: Positive step.
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Fig. 7.4: Left: Response to downward step-changes for initial condition y = C/RT = 0.5
and different values for L0/Kd; α = 2, β = 2.5 and γ = 0.2. Right: Response to a downward
step with the slope of the change, γ, changing; L0/Kd = 10 and α and β as before.

Conclusions

For a full understanding of the dynamics of a system it is necessary to conduct a series
stimulus-response experiments. For most experiments an initial concentration of ligands
is depleted and it is not possible to control the exact shape of the stimulus. Here we have
considered ‘typical’ input stimuli that may occur in a system.

We can easily extend the model of extracellular ligands binding to receptors, as dis-
cussed above, to intracellular signaling. A common mechanism for receptor regulated
signalling is dimerization, a ligand induced monomer-to-dimer transition. As a monomer dimerization

a single receptor is inactive, dimerization leads to an activation and intracellular autophos-
phorylation of the signaling domain as illustrated in Figure 7.8.

Let us denote by S̃ the non-phosphorylated form of a molecular species or substrate
S. The model for a signaling step suggested here is a phosphorylation

S̃i + Si−1

kai−−→←−−−
kdi

Si ,

where analog to (7.1)

d[Si]

dt
= kai[S̃i][Si−1]− kdi[Si] .
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Fig. 7.5: Left: Response to downward step-changes for initial condition y = C/RT = 0.5
and different values for L0/Kd; α = 2, β = 2.5 and γ = 0.2. Right: Response to a downward
step with the slope of the change, γ, changing; L0/Kd = 10 and α and β as before.
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Fig. 7.6: Impulse-like stimulus x(τ), α = 2, β = 2.5 for different width parameter.

We assume the total concentration of kinase Si is constant

[ST i]
.
= [S̃i] + [Si] ,

which inserted into the previous equation gives

d[Si]

dt
= kai[Si−1]([ST i]− [Si])− kdi[Si] ,

= kai[ST i][Si−1]− kai[Si−1][Si]− kdi[Si] .

In support of our eyesight we introduce xi to denote the phosphorylation of Si and write
ci

.
= [ST i], αi

.
= kaici, βi

.
= kdi, leading to

dxi

dt
= αixi−1 −

1

ci
xi−1xi − βixi ,

dxi

dt
= αixi−1

(

1− xi

ci

)

− βixi . (7.25)

This last equation is the basis for an interesting study of properties of a signaling pathway,
first introduced by Heinrich et al. [HNR02] and which we are going to discuss in greater
detail in Section 8.5.
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Fig. 7.8: Example of a common mechanism for receptor regulated signalling. Dimerization is
a ligand induced monomer-to-dimer transition. As a monomer a single receptor is inactive,
dimerization leads to an activation and intracellular autophosphorylation of the signaling
domain.

8 Dynamic Modelling of Biochemical Networks

Pathways are networks of biochemical reactions, most of which are facilitated by highly
specialized enzymes. The enzyme kinetic reaction can therefore serve as a template to
construct more complex pathway models. In the present section we therefore first look at
the equations that represent an enzyme kinetic reaction and hint at the use in dynamic
modelling of signal transduction pathways.

We are going to consider a compartment or region of the cell with volume V for
which we assume that diffusion is fast compared to the time scales of the reactions and
hence concentrations within this volume are homogenous. In many cases it is possible
to decompose more complex reaction networks into a set of uni- or monomolecular (first-
order) reactions and bimolecular (second order reactions), depicted

S
km−−→ · · · respectively S + E

kb−→ · · · ,

where the arrow denotes a conversion according to the law of mass action. Concentrations
are specified in mol per liter (M). When it is clear from the context, the square brackets
which denote concentrations, are often left away to have a simpler notation. The letters for
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the variables are chosen arbitrarily and depending on the context. The rate of the reaction reaction rate

or reaction rate v is, in case of the monomolecular reaction defined by the product km and
[S] and in case of the bimolecular reaction defined by the product of kb with [S] and [E]:

S
km−−→ · · · where v = km[S]

S + E
kb−→ · · · where v = kb[S][E]

The linear (monomolecular reaction), respectively bilinear relationship (bimolecular reac-
tion) of the reaction rate on the concentrations is in essence the law of mass action. Note
that the units of the rate constant k is per second (sec−1) for the monomolecular reaction
and in moles per second (M−1sec−1) for bimolecular reactions.

One approach to model more complex signal transduction pathways is to model each
step of the pathway on a template of an enzyme kinetic reaction (4.23)

E + S
k1−→←−−
k2

ES
k3−→ P + E (8.1)

with k1 denoting the rate at which the complex ES is formed; k2 at which ES dissociates
into enzyme E and substrate S; k3, the rate at which ES dissociates into product P and
E. The reaction diagram (8.1) can be decomposed into a set of mono- and bi-molecular
reactions

E + S
k1−→ ES , v1 = k1[E][S]

ES
k2−→ E + S , v2 = k2[ES]

ES
k3−→ P + E , v3 = k3[ES]

The ordinary differential equation model is directly derived from these reactions

d[E]

dt
= −k1[E][S] + k2[ES] + k3[ES]

d[S]

dt
= −k1[E][S] + k2[ES]

d[ES]

dt
= k1[E][S]− k2[ES]− k3[ES]

d[P ]

dt
= k3[ES] .







(8.2)

Figure 8.1 gives a graphical representation of these equations. If these graphical represen-
tation have a one-to-one mapping to the equations, they are an important communication
tool in interdisciplinary collaborations. Biologists naturally draw cartoons to represent
the relationship between variables in a pathway. There is however no standard about the
meaning of symbols and it is usually not obvious how to translate this into equations.

Using the rate of reactions, an alternative compact representation of (8.2) is

d[E]

dt
= −v1 + v2 + v3

d[S]

dt
= −v1 + v2

d[ES]

dt
= v1 − v2 − v3

d[P ]

dt
= v3 .







(8.3)
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Fig. 8.1: Graphical representation of the enzyme kinetic reaction. More complex signal
transduction pathways can be constructed using this template.

The enzyme is considered a catalyst, which facilitates the reaction without loss, i.e., the
total enzyme concentration, i.e. the sum of free enzyme [E] and enzyme in the complex
[ES], is constant. This is also apparent from adding the equations for ˙[E] and ˙[ES]:

˙[E] + ˙[ES] = 0 which implies [E](t) + [ES](t) = c1 .

Assuming there is initially no complex, [ES](0) = 0, the constant equals the initial enzyme
concentration c1 = [E](0). Inserting [E](t) = [E](0) − [ES](t) into the equation for
substrate [S], and complex [ES], the system of ODEs reduces to two equations:

˙[S] = −k1[E](0)[S] + (k1[S] + k2)[ES] (substrate)

˙[ES] = k1[E](0)[S]− (k1[S] + k2 + k3)[ES] (complex)

with initial conditions [S](0) and [ES](0) = 0.

The structure of the equations (i.e., the signs, the number of terms, and the variables
involved) are obtained as a direct translation of the biologist’s knowledge of a pathway.
This knowledge is usually not firm and the purpose of modelling is not only to fit ex-
perimental data to an assumed model, but to identify an appropriate model structure,
validating or updating the knowledge we have of the proteins in a pathway and how
they interact. To decide whether a model structure is realistic, a simulation could reveal
whether the concentration profiles match experimental experience. For a simulation we do
however need to know the values of the parameters. Ideally, we would like to derive some
general properties of the system, without knowing the exact parameter values. For the set
of equations (8.2) this can be done easily by looking at the equations. We know that the
enzyme [E] turns the substrate [S] into the product [P ] and thus we would expect [P ] to
increase steadily while [S] decreases. The last equation ˙[P ] = k3[ES] makes the product
increase so long as [ES] is positive. Since we deal with concentrations, all xi can only
be positive. Looking at the equation for the substrate, [S] will decrease so long as the
right-hand side is negative, i.e., k1[E][S] > k2[ES]. Thus from any initial condition [E],
[S], and [ES] would adjust themselves steadily until k1[E][S] > k2[ES] and from then on
[S] would decrease steadily.
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Fig. 8.2: A common means of signal transduction is through sequential phosphorylation and
dephosphorylation. Phosphorylation is facilitated by means of a kinase and dephosphory-
lation is realized by a phosphatase. The phosphorylated state is denoted by adding -P to
the name of the protein. More complex pathway diagrams can be built by connecting these
basic components into cascades and networks.

Symbolically, we can summaries the enzyme kinetic reaction model (4.23), (8.1) as
follows:

S
E⇒ P

We read this as “the conversion of S into P , facilitated (or catalyzed) by E”. For example,
signal transduction pathways are commonly considered as a series or cascade of modules,
each of which can be modelled using the enzyme kinetic reaction as a template. The signal
in these pathways is transmitted through facilitated phosphorylation of proteins referred
to as ‘kinases’:

1. P3
P4⇒ P ∗

3

2. P2
P ∗

3⇒ P ∗
2

P ∗

3⇒ P ∗∗
2

3. P1
P ∗∗

2⇒ P ∗
1

P ∗∗

2⇒ P ∗∗
1

where the ∗ and ∗∗ denote phosphorylation and double phosphorylation, respectively. Here
P4 facilitates the phosphorylation of P3 and so forth. More generally we use the ∗ to denote
an activation, which can but must not be achieved by phosphorylation. A phosphorylation,
e.g. of MEK, is often also denoted by adding -P to the name of the protein, MEK-P, or
ERK-PP, for phosphorylation and doublephosphorylation, respectively. Figure 8.2 shows
another common way to illustrate signaling steps in diagrams.

8.1 Simulation example

As an illustration, we here describe the simulation of the enzyme-kinetic reaction (8.2).
The four differential equations of (8.2) are an example for the mass action representation
(2.23) consisting of N ordinary differential rate equations

d

dt
[Si] =

M∑

µ=1

νµikµ

Lµ∏

j=1

[Sp(µj)]
lµj i = 1, 2, . . . , N (8.4)

where the kµ’s are rate constants and νµ denotes the change in molecules of Si resulting
from a single Rµ reaction. For more complex reaction networks one first has to divide
reversible reactions up into basic reaction channels

Rµ : lµ1Sp(µ1) + lµ2Sp(µ2) + · · ·+ lµLµSp(µLµ)
kµ−→ · · ·

where Lµ is the number of reactant species in channel Rµ, lµj is the stoichiometric co-

efficient of reactant species Sp(µj), Kµ =
∑Lµ

j=1 lµj denotes the molecularity of reaction
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channel Rµ, and the index p(µj) selects those Si participating in Rµ. For the enzyme-
kinetic reaction there are M = 3 reaction channels

R1 : E + S
k1−→ ES (bimolecular reaction)

R2 : ES
k2−→ E + S (monomolecular reaction)

R3 : ES
k3−→ E + P (monomolecular reaction)

For i = 1, . . . , N = 4, we translate the names ‘Enzyme’, ‘Substrate’, ‘Enzyme/Substrate
complex’, and ‘Product’ into the notation of Chapter 3:

S1
.
= E S2

.
= S , S3

.
= ES , S4

.
= P .

Subsequently, we have the matrix ν = [νµi]

ν11 = −1 , ν12 = −1 , ν13 = +1 , ν14 = 0

ν21 = +1 , ν22 = +1 , ν23 = −1 , ν24 = 0

ν31 = +1 , ν32 = 0 , ν33 = −1 , ν34 = 1

The indices for participating species are collected in terms of vectors pµ

p1 = (1, 2) , p2 = 3 , p3 = 3

Similar, to facilitate the software implementation of the equations, the stoichiometry is
defined by

l1 = (1, 1) , l2 = 1 , l3 = 1

such that the molecularity Kµ =
∑Lµ

j=1 lµj is encoded as follows

L1 = 2 , L2 = 1 , L3 = 1

K1 = 2 , K2 = 1 , K3 = 1 .

This leads us to a representation of the enzyme-kinetic reaction (4.23) in the form of (8.4)

dS1

dt
= ν11k1S

1
1S1

2 + ν21k2S
1
3 + ν31k3S

1
3

dS2

dt
= ν12k1S

1
1S1

2 + ν22k2S
1
3 + ν32k3S

1
3

dS3

dt
= ν13k1S

1
1S1

2 + ν23k2S
1
3 + ν33k3S

1
3

dS4

dt
= ν14k1S

1
1S1

2 + ν24k2S
1
3 + ν34k3S

1
3

Figure 8.3 shows a Matlab coding for the enzyme kinetic reaction, and effectively realizing
Equation (8.4). Figure 8.4 shows the inner and outer solution for the parameters in Figure
8.3. For most enzyme kinetic reactions, k1 is usually magnitudes larger than k2, which
means that there is initially a rapid drop in the enzyme and substrate concentrations. It
is for this reason that we have split the solution into an early phase or inner solution and
a later phase, called outer solution. For most practical cases, it is very difficult to take
measurements at very short time intervals. See [Rub75] for a comprehensive discussion.

8.2 Michaelis-Menten modelling

Phosphorylation steps in signaling cascades are enzyme kinetic reactions, the kinase facil-
itating the phosphorylation of a substrate. However, even for the relatively simple system
of an enzyme kinetic reaction

E + S ←→ ES → E + P
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function enzyme_kinetic

p = {[1 2],3,3}; % species indicator

l = {[1 1],1,1}; % stoichiometric coefficients

k = 60*[10 2 0.02]; % rate constants [(nM*min)^-1 min^-1 min^-1]

e0 = 0.5; s0 = 1; c0 = 0; p0 = 0;

S0 = [e0 s0 c0 p0]; % initial concentrations (nM)

tf = 10; % simulation end time (min)

% Step changes in all species in all reactions

% S1 S2 S3 S4

nu = [ -1 -1 1 0 % R1

1 1 -1 0 % R2

1 0 -1 1 ]; % R3

sol = ode15s(@comp_dSdt,[0 tf],S0,[],p,l,k,nu);

tau0 = 3/( k(1)*s0 + k(2) + k(3) ); % separating solutions at tau0

ti = linspace(0,tau0,1e3); to = linspace(tau0,tf,1e3);

Si = deval(sol,ti); plot(ti,Si) % inner solution

So = deval(sol,to); plot(to,So);ti = 60*ti; % outer solution

% Subfunction to calculate the GMA equation:

function dSdt = comp_dSdt(t,S,p,l,k,nu)

M = length(k); % Number of reaction channels

for u=1:M

P(u) = prod(S(p{u}(:)).^l{u}(:));

end

dSdt = ( k.*P*nu )’;

Fig. 8.3: Matlab file to simulate an enzyme-kinetic reaction as an example of the mass action
model. The solutions of the differential equations are split into two parts, which are shown
in Figure 8.4.

it is already rather difficult to obtain an analytical solution1 to the set of differential
equations (8.3). Furthermore, not all variables may be observable, i.e., measurable, or
identifiable from experimental data. Here we are going to discuss commonly used assump-
tions and simplifications.

Above we realized that the total enzyme is constant, [E] + [ES] = c1. Ignoring degra-
dation and reconstitution of the enzyme, the constant can be evaluated from the initial
conditions:

[E](t) + [ES](t) = [E](0) + [ES](0) . (8.5)

Using (8.5) to eliminate [E], we obtain

˙[S] = −k1

(
[E](0) + [ES](0)− [ES]

)
[S] + k2[ES] (8.6)

˙[ES] = k1

(
[E](0) + [ES](0)− [ES]

)
[S]− (k2 + k3)[ES] . (8.7)

which, together with initial conditions [S](0) and [ES](0) can be numerically solved. The
solution for [P ] can be derived easily from the solution of [ES]. The solution of [E] is
given by (8.5).

From our discussion in the previous section, we know that the substrate concentration
[S] steadily decreases. However, if it is the case that the available amount of substrate is
relatively large, i.e., we might consider it as unchanged for a suitable period of time, we
would have [S](t) = [S](0), so that (8.6) is not required. For this steady state assumption
(w.r.t. [S]), we are left with only (8.7)

˙[ES] = k1

(
[E](0) + [ES](0)− [ES](t)

)
[S]− (k2 + k3)[ES](t) . (8.8)

1Schnell [SM97] describes a closed form solution employing the omega function.
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Fig. 8.4: Temporal evolution of substrate, enzyme, complex and product for the enzyme
kinetic reaction. The plot on the left shows the inner solution

Denoting the steady state of [ES] by the constant ˜[ES], and inserting this into (8.8)

k1

(
[E](0) + [ES](0)− ˜[ES]

)
[S]− (k2 + k3) ˜[ES] = 0 ,

from which we obtain an expression for ˜[ES]

˜[ES] =

(
[E](0) + [ES](0)

)
[S]

Km + [S](0)
,

where

Km =
k2 + k3

k1
(8.9)

is called the Michaelis- or Michaelis-Menten constant. Denoting the deviation of the
complex from its steady state by [ES]′

[ES]′ = [ES](t)− ˜[ES]

and substituting this expression into (8.8)

[ES](t) = [ES]′(t) + ˜[ES] , (8.10)

and
d[ES]

dt
=

d[ES]′

dt
.

It follows
d[ES]′

dt
= −λ[ES]′ where λ = k1[S](0) + k2 + k3 ,

the solution of which is
[ES]′(t) = c · e−λt ,

where c is a constant we obtain from initial conditions. From (8.10)

[ES](t) = c · e−λt + ˜[ES] .

The initial condition for [ES] gives us then an expression for the constant c:

[ES](0) = c + ˜[ES] , or c = [ES](0)− ˜[ES] ,

leading to to a solution for the temporal evolution of the complex concentration

[ES](t) = ([ES](0)− ˜[ES]) · e−λt + ˜[ES] . (8.11)
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In conclusion, if substrate [S] can be considered constant, then the complex concentration
[ES](t) approaches asymptotically the steady state ˜[ES], regardless of its initial conditions.

If we therefore let ˙[ES] ≈ 0, this quasi steady-state assumption (w.r.t. [ES]) applied quasi steady-state

to (8.7), gives us the following expression

[ES](t) =
[ES](0)[S](t)

[S](t) + Km
, Km =

k2 + k3

k1
.

Substitute this into (8.6) gives an expression that forms the basis for many experimental
textbook settings:

[Ṡ] = −k3[ES](0)[S](t)

[S](t) + Km

The value V = | ˙[S]| is called the (initial) velocity of the reaction. Assuming [ES](0) = 0,
the equation above is commonly written as

V =
k3[ES](0)[S]

Km + [S]
.

Because ∂V/∂[S] > 0, the reaction velocity is an increasing function of the substrate
concentration. The maximum value of V , i.e., the maximum rate by which a product can
be formed, is approached for very large values of [S]

Vmax = lim
[S]→∞

V = k3[ES](0)

and is called the limiting rate. Dividing this maximum rate by the enzyme concentrationlimiting rate

is called the turnover number. Typical turnover numbers are 1000 substrate molecules
processed per second per enzyme molecule [A+02].

If the assumptions made above are realistic, the equation for V can be written as
follows

V =
Vmax · [S]

Km + [S]
. (8.12)

The Michaelis-Menten constant Km gives the initial substrate concentration at which
the reaction velocity is half maximal (since for [S](0) = Km substituted above gives
V = Vmax/2). Km is therefore an approximate measure of substrate affinity for the
enzyme. A low Km value means that the enzyme reaches its maximum catalytic rate at a
low substrate concentration, which generally indices a tighter substrate binding.

Since V can be measured as a function of [S](0), equation (8.12) allows us to estimate
Vmax and Km from curve fitting. To this end, we rearrange (8.12)

1

V
=

1

Vmax

(

1 +
Km

[S]

)

.

This represents a straight line with slope Km/Vmax and intercept 1/Vmax. Plotting values
of 1/V against 1/[S](0) is referred to the Lineweaver-Burk plot.

8.3 Multinomial Systems

In our discussion of stochastic modeling and simulation, equation (2.23) represented GMA
models. The general structure of these differential equations is of the form2

ẋi =
n∑

k=1

θik

n∏

j=1

x
lijk

j . (8.13)

2Dealing with differential equations we use n not as the state-vector but as an integer and limit to
sums. Similar, rather than referring to molecular species S we denote all variables with x, a notation that
is most frequently used in systems theory.



8.3. MULTINOMIAL SYSTEMS 173

Including m independent variables, we write (see also page 36)

ẋi =
n+m∑

k=1

θik

n+m∏

j=1

x
lijk

j . (8.14)

The mathematical structure was introduced by W.Peschel and W.Mende and is referred
to as multinomial systems. Applied to biochemical reaction networks, these equations are
the generalized mass action models (2.23) introduced in Section 2.5. The set of equations
for the enzyme kinetic reaction (4.23) is an example for a GMA system. We obtain the
matrix of coefficients

[θik] =







−k1 k2 k3 0
−k1 k2 0 0
k1 −k2 −k3 0
0 0 k3 0







and the set of matrices Li = [ljk]i for the powers pjk in equation i:

L1 =







1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0







L2 =







1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0







L3 =







1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0







L4 =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0







While the class of models, which is defined by (8.14) seems very general and it may
seem difficult to conduct a formal analysis of these equations without turning to numerical
solutions, we ought to remember that the values xi cannot be negative and that although
the coefficients can be positive or negative, which sign applies is predefined by the model
structure or the reaction diagram respectively.

The ability to derive general properties of the dynamic behavior of a system, indepen-
dent of specific parameter values, is the most attractive aspect of a formal mathematical
analysis. If we consider the sparse data sets we obtain from experiments, such analysis
would benefit parameter estimation and experimental design. If we are able to establish an
order relationship between parameters, e.g. “k1 � k3”, this would very useful in guiding
parameter estimation, or providing confidence in using parameter values from literature.
Due to experimental uncertainties, absolute values have little value, and an analysis in
terms of basic temporal profiles (e.g. “x1 decays exponentially”, “x2 peaks before [P ]”,
“x1 is pulled down”, “x2 is delayed”) is at the heart of the biologists reasoning.
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An example for a model of the ERK pathway, is the following set of equations:

ẋ1 = −k1x1x2 + k2x3 − k10x1x12 + k11x13 + k6x7 + k14x14

ẋ2 = −k1x1x2 + k2x3

ẋ3 = k1x1x2 − (k2 + k3)x3

ẋ4 = k3x3

ẋ5 = k3x3 − k4x5x6 + k5x7

ẋ6 = −k4x5x6 + k5x7 + k9x10

ẋ7 = k4x5x6 − (k5 + k6)x7

ẋ8 = k6x7 − k7x8x9 + k8x10

ẋ9 = k14x14 − k7x8x9 + k8x10

ẋ10 = k7x8x9 − (k8 + k9)x10

ẋ11 = k9x10 − k12x11x13 + k13x14

ẋ12 = −k10x1x12 + k11x13 + k15x15

ẋ13 = k10x1x12 − k11x13 − k12x11x13 + k13x14

ẋ14 = k12x11x13 − (k13 + k14)x14

ẋ15 = k14x14 − k15x15 .

The structure of these equations is determined from knowledge of the proteins (xi) in-
volved. For some of these proteins we can obtained experimental time course data but not
for all. The question is then whether we could extract from this system of equation basic
relationships between the k’s, considering that we are looking for basic temporal profiles
(all of which either converge to zero or some steady state)?

Since the structure of these equations is fairly well defined (sums of simple products
of variables, the signs of terms are given, the parameters are always positive), one might
imagine some ‘qualitative’ analysis of the kind described above: Given time course data
for some of the variables, we first of all wish to validate the model structure (e.g. test
for feedback through an additional negative term in one of the equations). The model
structure is in this sense more important than knowing exact parameter values. We
elaborate on these issues further in Chapter 6.

8.4 S-Systems

The mathematical structure (8.13) suggests a form in which we separate positive terms
(complex formation, production) from negative terms (dissociation, degradation, deple-
tion):

ẋi = V +
i (x1, . . . , xn)− V −

i (x1, . . . , xn) .

If we are to include m independent variables we write

ẋi = V +
i (x1, . . . , xn, xn+1, . . . , xn+m)− V −

i (x1, . . . , xn, xn+1, . . . , xn+m) . (8.15)

where i = 1, . . . , n. This general format allows for different classes of representations, one
of which are S-systems.

The S-Systems approach, mostly developed by M.Savageau and E.O.Voit [Voi00], starts
with the general description (8.15)

ẋi = V +
i − V −

i for i = 1, 2, . . . , n ,

where the general functions are reduced to simple products of the variables involved. Such
power law representation has some attractive mathematical features, but is implicitly
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based on a Taylor series approximation around a steady state value. This is alright for
studying metabolic fluxes but does not work for transient phenomena in, for instance,
signal transduction pathways.

For example, considering the conversion of x1 into x2, catalyzed by x3. We assume a
constant influx α to replenish x1. The degradation of x1 depends on the concentration or
pool size of x1 itself and also on the enzyme x3:

ẋ1 = α− V −
1 (x1, x3) .

The production of x2 is described in the same way as the degradation of x1, V +
2 = V −

1 .
Finally, the degradation of x2 depends only on its current concentration or pool size:

ẋ2 = V −
1 (x1, x3)− V −

2 (x2) .

The S-systems approach would then choose the following power-law representations for
V −

1 ad V −
2 :

V −
1 (x1, x3) = βxa

1x
b
3 ,

V −
2 (x2) = γxc

2 .

For a general S-system we write

ẋi = αi

n+m∏

j=1

x
gij

j − βi

n+m∏

j=1

x
hij

j for i = 1, 2, . . . , n ,

and α denoting the rate constant for the production of each pool and β for its degradation
or loss. These values can be positive or zero but not negative. There are numerous publi-
cations, exploring the theoretical properties of S-systems and applying them to metabolic
pathways.

8.5 The Heinrich Model

In [HNR02], Heinrich and colleagues demonstrated that even without experimental data to
estimate parameter values, mathematical modelling allows an interesting study of protein
kinase signal transduction pathways. Amongst other things they concluded from their
study that:

• The simplest model pathways allow amplified signalling only at the expense of slow
signal transduction.

• Phosphatases have a more pronounced effect than kinases on the rate and duration
of signalling, whereas signal amplification is controlled primarily by kinases.

Heinrich first considers a linear signalling cascade with the stimulation of a receptor,
forming the upper part of the pathway and subsequent sequential activation of down-
stream proteins through phosphorylation via kinases. The output of the pathway is the
phosphorylation of a protein, which is assumed to have further consequences, e.g. on
the activation of transcription factors and thereby influencing transcription of genes. De-
activation of proteins is realized through dephosphorylation via phosphatases in case of
intermediate pathway elements. Receptors can thought of being deactivated by receptor
dephosphorylation, internalization of the receptor-ligand complex, and/or degradation of
the receptor or ligand.
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Considering the enzyme-kinetic reaction as a template for activation and deactivation,
and assuming that the concentration of each kinase-substrate complex in the pathway is
small compared to the total concentration of the reaction partners, and assuming that the
concentration of active phosphatase is constant, each phosphorylation step or activation is
described as a second-order or bi-molecular reaction, where the phosphorylated form xi−1

of protein i − 1 one step up in the pathway takes the role of the kinase which facilitates
the activation of the nonphosphorylated form x̃i of the next downstream protein, referred
to as the substrate of the reaction.

x̃i + xi−1
α̃i−→ xi : phoshorylation

xi
βi−→ x̃i + xi−1 : dephoshorylation

The phosphorylation rate is given by the expression

vp,i = α̃ixi−1x̃i ,

where α̃i is the phosphorylation second-order rate constant for phosphorylation of the ith
kinase. Assuming that the concentration of active phosphatase is constant, dephosphory-
lation is modelled as a first order reaction with dephosphorylation rate

vd,i = βixi ,

where βi is the rate constant for dephosphorylation by the ith phosphatase. Defining

ci = x̃i + xi

as the total concentration of protein kinase i. The differential equation for the phospho-
rylation or activation of xi is given by

dxi

dt
= vp,i − vd,i

= α̃ixi−1x̃i − βixi

Let

αi = α̃ici

be a pseudo- first-order rate constant, so that we can write

dxi

dt
= αixi−1

(

1− xi

ci

)

− βixi , (8.16)

which we also introduced in Section 7. The first step of the pathway, receptor stimulation,
is modelled as

dx1

dt
= α1u(t)

(

1− x1

c1

)

− β1x1 , (8.17)

where u(t) is the concentration profile of the activated receptor. For example, the inactiva-
tion of the receptor may be modelled as u(t) = exp(−λt), where 1/α is the time constant
of the receptor. For λ → 0, the pathway is permanently activated. Heinrich et al. then
introduce the signalling time as the average time to activate protein isignaling time

τi =
Ti

li
where li =

∫ ∞

0
xi(t) dt and Ti =

∫ ∞

0
txi(t) dt . (8.18)

li denotes the total amount of active protein i, generated during the signaling period. The
signal duration is defined bysignal duration
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θi =

√

Qi

li
− τ2

i , where Qi =

∫ ∞

0
t2xi(t)dt . (8.19)

For a weakly activated pathway all of its proteins are phosphorylated to a low degreeweak activation

such that xi � ci. As a consequence, Equation (8.16) becomes

dxi

dt
= αixi−1 − βixi . (8.20)

Heinrich et al. showed that the signaling time and signal duration can for this case be
calculated explicitly:

signalling time: τ =
1

λ
+

n∑

i=1

1

βi
, (8.21)

signal duration: θ =

√
√
√
√

1

λ2
+

n∑

i=1

1

β2
i

. (8.22)

8.6 The MAP Kinase (MAPK) Pathway

This section is to introduce an important class of signaling pathways. For unfamiliar
biochemical expressions the reader is referred to the glossary on page 226.

input MAPKKK MAPKK MAPK output

Fig. 8.5: Compact representation of the MAPK pathway.

The mitogen-activated protein kinase (MAPK) cascade, is part of the growth-factor/Ras
pathway in eucaryotic cells. The cascade3 is highly conserved, which means that the same
principles can be observed in a variety of organisms and cell types.

The core of this pathway is formed by a module which is defined by three protein
kinases: MAPKKK (e.g. RAS/Raf), MAPKK (e.g. MEK) and MAPK. This module is
activated by a collection of proteins, some of which have to occur in combination. The
first element of the module to be activated is the MAPKKK. The activated MAPKKK
phosphorylates MAPKK at two sites. This double phosphorylated MAPKK, denoted
MAPKK**, acts as a threonine/tyrosine kinase and phosphorylates MAPK at two sites of
the protein structure. MAPK can then act as a kinase for transcription factors, but may
also have a feedback effect on the activity of kinases like the MAPKKK further upstream.

The ERK (extracellular-signal-regulated kinase) pathway is an example for a MAPK
casade, which features Ras as the G-protein, Raf as MAPKKK, MEK (MAPK/ERK
kinase) as MAPKK and ERK as MAPK. Ras and Raf are proto-oncogenes which explains
the interest in this pathway [Kol00]. Most stimuli to the receptor leads to an activation
of the G-protein Ras by inducing the exchange of GDP with GTP. GDP and GTP are
therefore also referred to as exchange factors. This exchange will convert the Ras molecule
into its active conformation. Ras resides near the cell membrane and one says that the
exchange factors are recruited. The protein SOS (son of sevenless) is another Ras exchange

3Biologists refer to an unbranched sequence of modules combined in a cascade as a linear cascade.
The term ‘linear’ has not relationship with the question whether the biochemical reactions and their
mathematical model are linear or nonlinear. See page 30 for a definition a linear model. The upper -
membrane near parts of the pathway are also referred to ‘upstream regions’.
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Fig. 8.6: The MAP kinase pathway. The core of this pathway is formed by a module which
is defined by three protein kinases: MAPKKK, MAPKK and MAPK. Drawing adapted from
[Kol00].
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Fig. 8.8: General outline of the MAPK pathway.

factor, which can terminate Ras activation. This termination proceeds by phosphorylation
of SOS, which leads to the disassembly of the complex. The phosphorylation of SOS is
also feedback regulated by the activated ERK pathway [Kol00].

Activated Ras functions as an adaptor that binds to Raf kinases with high affinity
and causes their translocation to the cell membrane, where Raf activation takes place.4

Mammals posses three Raf proteins which are also referred to as isoforms: Raf-2, A-Raf,
and B-Raf. For all three, MEK acts as a substrate further ‘downstream’ of the pathway.

MEK is activated by phosphorylation of two serine residues in the activation loop.
The most predominant activator of MEK in most cell types are Raf kinases. It is believed
that Raf-1 can inhibit itself through some negative feedback. Raf seems to be suspended
in a balance between activation and auto-inhibition [Kol00]. Raf can activate both MEK
isoforms, MEK-1 and MEK-2, and both of them can activate the downstream ERK kinases.
MEK is a ‘dual-specificity’ kinase which can phosphorylate both.

Finally, ERK is a serine/threosine kinase with more than 50 substrates [Kol00]. All
components of the Ras/Raf/MEK/ERK pathway can interact with each other physically:
Ras-GTP binds to Raf; Raf can bind to MEK; and MEK can bind to ERK.

8.7 The Ras/Raf/MEK/ERK Pathway

This section describes a mathematical model of the ERK module, as an example of a
MAPK signal transduction pathway. The model is represented by a set of nonlinear signal transduction

differential equations. We show how this representation can be generalized to capture a
large class of dynamic pathway models. In this framework, a pathway diagram corresponds
to the state space of a dynamic system, while the entirety of dynamic processes that can
occur in a particular pathway is defined by a one-parameter group of transformations in
the manifold that is the state space. We are thus providing a conceptual framework in
which to describe not only pathway diagrams but also the spatial-temporal interactions
within and between cells.

Experimental data show that the inhibition of MEK phosphorylation by RKIP is not
linear (Fig. 4.17). There is a threshold of RKIP expression that steeply reduces MEK
phosphorylation. This is consistent with a positive feedback mechanism. If not all Raf is
bound to RKIP, then there is Raf-1 available for interacting with and activating MEK.
MEK then activates ERK. Consequently, the positive feedback phosphorylation of RKIP

4The spatial dimension, translocation of molecules, is an important aspect that is ignored by conven-
tional models. One idea is to divide a space up into regions, model each region separately and allow for
an exchange between them. We are thus in need for a multi-model concept.
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Fig. 8.9: Illustration of how a signal is relayed through sequential activation of proteins in
the Ras/Raf/MEK/ERK pathway. Note that this picture is an idealized picture and actual
amplitudes and base levels may differ significantly when considering experimental data. See
also Figure 8.7.

by ERK will ensure that RKIP is phosphorylated and dissociates from Raf-1. In this situ-
ation there will be little or no inhibition of Raf-1 by RKIP. If the level of RKIP expression
exceeds a certain threshold, all of the Raf-1 will be bound to RKIP. In this situation there
is no phosphorylation of RKIP and no dissociation. Hence MEK phosphorylation remains
inhibited.
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Fig. 8.10: Illustration of the interactions of RKIP with the Ras/Raf/MEK/ERK pathway.

To analyze the dynamics of the ERK signaling pathway, including the positive feedback
mechanism, in both qualitative and quantitative manner, we constructed a mathematical
model based on the mass action law and represented by nonlinear ordinary differential
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equations (see Figure 8.11):

ẋ1 = −k1x1x2 − k9x1x12 + k10x13 + k5x7 + k13x14

ẋ2 = −k1x1x2

ẋ3 = k1x1x2 − k2x3

ẋ4 = k2x3

ẋ5 = k2x3 − k3x5x6 + k4x7

ẋ6 = −k3x5x6 + k4x7 + k8x10

ẋ7 = k3x5x6 − (k4 + k5)x7

ẋ8 = k5x7 − k6x8x9 + k7x10

ẋ9 = k13x14 − k6x8x9 + k7x10

ẋ10 = k6x8x9 − (k7 + k8)x10

ẋ11 = k8x10 − k11x11x13 + k12x14

ẋ12 = −k9x1x12 + k10x13 + k14x15

ẋ13 = k9x1x12 − k10x13 − k11x11x13 + k12x14

ẋ14 = k11x11x13 − (k12 + k13)x14

ẋ15 = k13x14 − k14x15 .







(8.23)

The mathematical structure is one of multinomial systems, concentrations xi as well as
the values for parameters k can only be positive. Each step in the pathway is modelled
in analogy to an enzyme kinetic reaction (8.1). Possible algebraic simplifications of the
model and parameter estimation are not discussed here as this is not the focus of the
present section.

The Ras/Raf-1/MEK/ERK module is an ubiquitously expressed signaling pathway
that conveys mitogenic and differential signals from the cell membrane to the nucleus
[YJM+00]-[Kol00]. This kinase cascade appears to be spatially organized in a signaling
complex nucleated by Ras proteins. The small G protein Ras is activated by many growth
factor receptors and binds to the Raf-1 kinase with high affinity when activated. This
induces the recruitment of Raf-1 from the cytosol to the cell membrane. Activated Raf-1
then phosphorylates and activates MAPK/ERK kinase (MEK), a kinase that in turn phos-
phorylates and activates Extracellular Kinase (ERK), the prototypic Mitogen-Activated
Protein Kinase (MAPK). Activated ERKs can translocate to the nucleus and regulate
gene expression by phosphorylation of transcription factors. This kinase cascade controls
the proliferation and differentiation of different cell types. The specific biological effects
of the kinase cascade are crucially regulated by the Raf-1 kinase inhibitor protein (RKIP)
[YRD+01]. RKIP binds to Raf-1 thereby disrupting the interaction between Raf-1 and
MEK. As a consequence RKIP inhibits the phosphorylation and activation of MEK by
Raf-1. RKIP overexpression interferes with the activation of MEK and ERK, induction of
AP-1 dependent receptor genes and transformation elicited by an oncogenically activated
Raf-1 kinase [YSL+99].

Figure 8.12 shows a simulation of the ERK model for varying initial concentrations
of the Raf-1 kinase inhibitor protein RKIP. The simulations show the rate of active Ras
(x2) binding to Raf-1 (x1) linearly decreasing along with the initial value of RKIP. The
plots demonstrate how the initial signal transduction through active Ras is interrupted
by RKIP. The variation profile of active Raf (x5) as a function of variations of the initial
value for RKIP is similar to active MEK (x8) and active ERK (x11). The dynamics of
these proteins in Figure 8.12 also exhibit the nonlinear relationships encapsulated by the
model. At low initial concentration of RKIP all signal proteins are completely activated
although with different time lags. At high concentrations of RKIP, the activation ratio
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Fig. 8.11: Graphical representation of the model for Ras/Raf-1/MEK/ERK signaling mod-
ule, describing a positive feedback loop between RKIP and double phosphorylated ERK
(ERKpp).

is about zero. These simulation results show that there is a threshold of concentration
of RKIP that steeply reduces the phosphorylation of each protein, which is in accordance
with the data in Figure 4.17.

The concept of a pathway is the framework in which a molecular- or cell biologist
captures her/his knowledge of pathway variables, their states and relationships. A pathway
model - whether a simple diagram or a mathematical representation like the one described
here is an abstraction. In [RS02] the authors discuss the importance of abstractions in
science and suggest an abstract computer language like π-calculus for pathway modelling.
This language provides a means to formalize the knowledge of components and their
interactions. In order to simulate a model in this framework, the process algebra requires
the use of, for instance, the Gillespie algorithm in order to compile the model. Here we
are seeking an abstract (and thus generally applicable) algebraic framework in which to
discuss the dynamic properties of a pathway but also the entirety of dynamic processes
the cell can realize as well as relationships between cells. Instead of a computer language,
we begin with chemical rate equations and work ‘upwards’ through generalizations of the
models that can be constructed to represent the dynamic interactions in pathways. The
main argument for a π-calculus is its “linguistic structure” and “operational semantics”
from which causal relationships can be derived. The motto of the approach presented in
this section could be that we wish to realize what the biologist could see rather than what
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Fig. 8.12: Simulation of the ERK model for varying initial concentrations of RKIP.

he says.

8.8 Feedback and Oscillations in Signalling Pathways

In Figure 8.6 a prototypical mitogen-activated protein kinase (MAPK) cascade is shown
[Fer96, Kol00]. MAP kinase pathways have been found in many organisms and cell types.
They are also an important system for cancer research studies [Kol00, YSL+99, YJM+00]
and have been considered in various modelling exercises (e.g. [Fer96, HF96, BI99, Kho00,
BF00, AL01, K+02]).

Let us model phosphorylation and dephosphorylation as a reversible bimolecular reac-
tion, where the phosphorylation of X into X∗ is facilitated by the kinase U , and dephos-
phorylation by phosphatase P :

X + U
k1−→ X∗ + U ,

X∗ + P
k′

2−→ X + P .

We write x̃ for the nonphosphorylated form of a molecular species or protein X, u for the
kinase U , p for phosphatase P and x to denote the activated, i.e., phosphorylated protein
X∗. Referring to the law of mass action, we obtain the following set of ordinary differential
equations

d

dt
x = k1u(t)x̃(t)− k′

2p(t)x(t) : phosphorylation,

d

dt
x̃ = −k1u(t)x̃(t) + k′

2p(t)x(t) : dephosphorylation .

To simplify the mathematical model we assume that the phosphatase is constant. This
means we can merge p and k′

2 into k2. Together with the conservation for a constant total
of x,

x̄ = x(t) + x̃(t) ,

we obtain the following differential equation, in one variable, to describe the phosphory-
lation of protein X:

d

dt
x = k1u(t)

(
x̄− x(t)

)
− k2x(t) .

The block diagram for a signaling step, (de-)phosphorylation is readily obtained:
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u(t)
×

x̃(t)

k1

x(t)

k2

−

− x̄

u(t)
×

k1 k2

x(t)

x̃(t)

− x̄

In this model for (de-)phosphorylation, it is assumed that kinase-substrate concentrations
are low compared to the total concentration of the reactant species. Furthermore, for
dephosphorylation to be considered a first-order reaction, it is assumed that the active
phosphatase concentration is constant.

For more complex systems, let us now collapse the previous diagram into a single block
to represent the (de-)phosphorylation of x̃ through kinase u:

u(t)

k1 k2

♦ x(t)

ATP kinase ADP

Protein
pho

sphorylation

dephosphorylati
on

Protein-P

phosphatase

The diagram on the right illustrates the conventional, and more detailed, representation.
Phosphorylation is facilitated by means of a kinase and dephosphorylation is realized by
a phosphatase. The phosphorylated state is commonly denoted by adding -P to the name
of the protein.

Given such a module, we are now in a position to construct more complex pathway
diagrams by connecting these basic components into cascades and networks. For example,
for the pathway in Figure 8.6 the map is [Kho00]:

u(t)

x̃1
1

2
x1

x̃2
3

6
x2

4

5
x3

x̃4
7

10
x4

8

9
x5

In the diagram x1 corresponds to activated MKKK-P, x2 to MKK-P, x3 to the double-
phosphorylated MKK-PP, x4 to MAPK-P, x5 to MAPK-PP. Inactivated forms are denoted
with a tilde x̃. In signalling activation/inactivation of proteins corresponds to phosphory-
lation/dephosphorylation, while in some cases one considers double-phosphorylations:

v1 = k1u(t)x̃1(t), v6 = k6x2(t)

v2 = k2x1(t), v7 = k7x3(t)x̃4(t)

v3 = k3x1(t)x̃2(t), v8 = k8x3(t)x4(t)

v4 = k4x1(t)x2(t), v9 = k9x5(t)

v5 = k5x3(t), v10 = k10x4(t)
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The model is the derived from the fact that

ẋ1 = v1 − v2 ẋ2 = v3 − v6 − v4 + v5

ẋ3 = v4 − v5 ẋ4 = v7 − v10 + v9 − v8

ẋ5 = v8 − v9

Inserting the reaction rates into these equations we obtain the following set of equations
for the activated proteins in the pathway:

ẋ1 = k1u(t)x̃1(t)− k2x1(t)

ẋ2 = k3x1(t)x̃2(t)− k6x2(t)−k4x1(t)x2(t) + k5x3(t)
︸ ︷︷ ︸

−ẋ3

ẋ3 = k4x1(t)x2(t)− k5x3(t)

ẋ4 = k7x3(t)x̃4(t) +k9x5(t)− k8x3(t)x4(t)
︸ ︷︷ ︸

−ẋ5

−k10x4(t)

ẋ5 = k8x3(t)x4(t)− k9x5(t) .

In addition, the following conservation relationships hold:

x̄1 = x̃1(t) + x1(t)

x̄3 = x̃3(t) + x2(t) + x3(t)

x̄5 = x̃4(t) + x4(t) + x5(t)

Using the mathematical model for (de-)phosphorylation from above, the double phos-
phorylation of x4 into x5 is described by the following block diagram:

x3(t) ×

k7

x̃4

k10

×

k8

x5(t)

k9

−−

−

x4(t)

−

x̄5

−

This again we can collapse into a single block, without loss of information:

x3(t) x5(t)♦x4♦

k7, k10, k8, k9

The MAP kinase pathway can then be represented by the compact block diagram:

u(t)

k1 k2

♦
x1

♦x2♦

k3, k6,k4,k5

x3
♦x4♦

k7,k10,k8,k9

x5(t)
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This system is then another example of the state-space representation, where for u(t) we
might assume a negative exponential function u(t) = e−λt, where an initial concentration
of ligands is depleted through binding to the receptors on the cell surface. The greater the
value of λ, the faster the ligands bind with receptors to form complexes. In [HNR02], these
series-connected submodels of (de-)phosphorylation, have been used to analyze pathways
for their dynamic properties. In particular the authors derived expression for the signaling
time, defined as the average time to activate a protein in the pathway and the signal
duration, characterized by an integral of the concentration profile. In [Kho00] a very
similar model as the one above is modified by introducing a negative feedback loop between
the end product MAPK-PP and a Ras/MAPKKKK complex at the top of the pathway.
Kholodenko showed how ultrasensitivity, leading to switch-like behavior, combined with
negative feedback can bring about sustained oscillations in this pathway. Considering
populations of cells, this may be of particular interest in the context of the synchronization
of coupled oscillators, which has been observed in a range of biological and physical systems
[Str00a]. Approaches to test for feedback loops have been presented in [K+02, AFS04].
In [BI99, BF00, AL01] computational studies of feedback effects on signal dynamics in a
detailed MAPK pathway model are presented.

Feedback in Signalling Pathways

We continue the previous section, introducing feedback loops from a protein xj further
down the pathway, up to xi. We have two options indicated in the following diagrams:

u(t)

F (xj)

x̃i xi

u(t)

G(xj)

x̃i xi

On the left-hand side, feedback manifests itself as a multiplicative term in the differential
equation for xi:

d

dt
xi(t) = k1u(t)F (xj)

(
x̄i − xi(t)

)
− k2xi(t) ,

where for the function F (xj) we can choose from the following commonly used versions:

F (xj) =
1

1 +
(

xj

KI

)n , F (xj) =
c

dn + xn
j

, F (xj) =
cxn

j

dn + xn
j

,

where n ≥ 1 defines the steepness of the feedback function and the subscript I of KI

stands for ‘inhibition’. The main requirement for the choice of a function F (xj) is that at
xj = 0, we should have F (xj) = 1. Mechanistic interpretations and experimental evidence
for these functions are discussed in [Gol96, Fer96, HF96, LQ03]. Note the distinction
between a mechanistic (or physical) and a operational (or phenomenological) definition
for an interaction. An operational definition is based on observations, not necessarily
requiring an interpretation/understanding of the physical interactions of the molecules
involved, as would be the case for a mechanistic definition of kinetic behavior [CB04,
pg. 116]. For the feedback indicated on the right-hand side, and represented by G(xj),
there is an additional contribution to the activation of X:

X + U
k1−→ X∗ + U , X + G

kG−−→ X∗ + G ,
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leading to the following, modified ODE model:

d

dt
x(t) = k1u(t)

(
x̄− x(t)

)
+ kGG(xj)

(
x̄− x(t)

)
− k2x(t)

= k1

(
x̄− x(t)

)
[

u(t) +
kGG(xj)

k1

]

− k2x(t) .

If G(xj) is monotonically increasing as xj increases, we are dealing with positive feedback
and, vice versa, if G(xj) monotonically decreasing with xj , we are dealing with negative
feedback. While for conventional pathway maps the kind of feedback employed remains
unclear, if not explicitly stated. In the block diagram , however in our scheme we recognize
the two situations as follows:

u(t)
×

k1 k2

♦ xi(t)

F (xj)

xj(t)

u(t)
k1 k2

♦ xi(t)

kGG(xj)

k1

xj(t)

Michaelis-Menten Kinetics

The mass-action models for (de-)phosphorylation, as introduced above, could be criticized
in that if the activation of a protein X is seen as an enzyme catalyzed reaction, the rate
of activation in experiments is limited. Some authors might argue that a more realistic
model would be to consider Michaelis-Menten kinetics. We here show how the Michaelis-
Menten model can be derived from the mass-action model. In the context of signalling
pathways an argument against Michaelis-Menten kinetics is the fact that in its derivation,
the enzyme concentrations should be much smaller than the substrate concentration. In
the context of cell signalling the relationships between kinase concentrations and those
of inactivated proteins may however not satisfy this assumption. Let us consider the
activation (phosphorylation) of protein X by means of an enzyme (kinase) E:

E

X X∗

P

The dephosphorylation of the activated protein X∗ is realized by some phosphatase P ,
which we here assume to have a constant concentration. The mass-action model of these
two processes is

X + E
k1−−−−−→ X∗ + E , X∗ + P

k′

2−−−−−→ X + P .

Using again the previously introduced notation, the corresponding differential equation
for activation is

d

dt
x = k1e(t)x̃(t)− k′

2p(t)x(t) .
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Assuming a constant phosphatase P , let us redefine k2
.
= k′

2p(t). With the conservation
relation x̃(t) + x(t) = x̄, we thus have

d

dt
x = k1e(t)

(
x̄− x(t)

)
− k2x(t) .

Note that only one differential equation is needed since changes in the non-phosphorylated
form can always be derived from the conservation relation. A Michaelis-Menten model of
a signalling module considers an intermediate complex in the enzyme catalyzed reaction

X + E
a1−−→←−−−−−
d1

XE
k1−−→ X∗ + E , X∗ + P

a2−−→←−−−−−
d2

X∗P
k2−−→ X + P .

It is assumed that the first forward reaction is very fast, i.e., for phosphorylation a1 � d1.
Focussing on steady-states, one finds for the Michaelis-Menten constants

Km1 =
d1 + k1

a1
, Km2 =

d2 + k2

a2
.

The equations for a Michaelis-Menten model are then

d

dt
x =

k1e(t)
(
x̄− x(t)

)

Km1 + x̄− x(t)
− k2x

Km2 + x̄− x(t)
.

If E can be assumed to be constant, one would frequently define Vmax
.
= k1E as the

maximum velocity of the reaction, that is achieved for large concentrations of the non-
activated form x = x̄− x. Michaelis-Menten models of the MAP-kinase signaling cascade
are considered in [HF96, Kho00, K+02].

The Ras/Raf/MEK/ERK Pathway

In this section we work out an example for the MAP-kinase pathway in Figure 8.6. In
the Ras/Raf/MEK/ERK pathway Ras is the G-protein, Raf the MAPKKK, MEK the
MAPKK and ERK the MAPK [Kol00]. While the linear cascade of Figure 8.6 is a textbook
illustration, the research literature suggests the existence of various feedback loops such
that we are dealing with a network rather than a linear cascade. As an example, for the
Ras/Raf/MEK/ERK pathway a positive feedback mechanism can be illustrate with the
following cartoon [YSL+99, YJM+00]:

Ras Raf-1 MEK

a
ct

iv
a
ti
o
n

ERK �

Raf-1

increase

Raf-1
dissociation

RKIP

phosphorylation

RKIP

P
P

P
P

P

P

The MAP kinase module is realized by the sequential activation of Raf-1, upstream near
the cell membrane, followed by activation of the proteins MEK and ERK through struc-
tural modifications in the form of phosphorylations indicated by the P’s. ERK translocates
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7
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x4

Fig. 8.13: Pathway map for the Ras/Raf/MEK/ERK signal transduction pathway with two
speculated feedback loops. The dashed parts describe a positive feedback loop. The bar at
the end of a line denotes an inhibition. Note that x3 is acting on the phosphorylation of x̃4.
The dotted line describes a negative feedback loop. The variables are x1

.
= Raf, x2

.
= MEK,

x3
.
= ERK, x4

.
= RKIP. x̃ denotes the non-activated or non-phosphorylated form.

into the nucleus of the cell, where it effects the transcription of genes. Double phosphory-
lated ERK-PP also phosphorylates RKIP and thereby releases Raf from the Raf-1/RKIP
complex, and Raf in turn activates MEK. This positive feedback loop leads to switch-like
behavior of the pathway.

We first translate the cartoon into a pathway map to reduce ambiguity. The pathway
map is shown in Figure 8.13. The variables are x1

.
= Raf, x2

.
= MEK, x3

.
= ERK, x4

.
=

RKIP. To simplify the example we ignored the double-phosphorylations of the previous
Section. We first consider the pathway without any feedback loop. The mathematical of
model of this simple three module cascade is specified by the following set of equations.

d

dt
x1 =

k1u(t)(x̄1 − x1(t))

Km1 + (x̄1 − x1(t))
︸ ︷︷ ︸

phosphorylation

− k2x1(t)

Km2 + x1(t)
︸ ︷︷ ︸

dephosphorylation

d

dt
x2 =

k3x1(t)(x̄2 − x2(t))

Km3 + (x̄2 − x2(t))
− k4x2(t)

Km4 + x2(t)

d

dt
x3 =

k5x2(t)(x̄3 − x3(t))

Km5 + (x̄3 − x3(t))
− k6x3(t)

Km6 + x3(t)
,

where for the conservation relations x̄1 = x̃1(t)+x1(t), x̄2 = x̃2(t)+x2(t), x̄3 = x̃3(t)+x3(t)
hold. Next we consider the positive feedback loop introduced by RKIP and which is
denoted by x4. First phosphorylation and dephosphorylation are described as before,

d

dt
x4 =

k7x3(t)(x̄4 − x4(t))

Km7 + (x̄4 − x4(t))
− k8x4(t)

Km8 + x4(t)
,

where x̄4 = x̃4(t)+x4(t). Note that x3, activated ERK-PP, is acting on the phosphorylation
of x4 (RKIP). The inhibitory effect of RKIP on the phosphorylation of x2 (MEK) is
reflected by a change to the rate equation of x2:

d

dt
x2 =

k3x1(t)

[

1/

(

1 +

[
x̄4 − x4(t)

KP

]p)]

(x̄2 − x2(t))

Km3 +
(
x̄2 − x2(t)

) − k4x2(t)

Km4 + x2(t)
,
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Fig. 8.14: Simulink block diagram of the Ras/Raf/MEK/ERK signal transduction pathway
with RKIP regulation. Individual blocks can be “unmasked” to reveal their inside. The
inside elements of these blocks are identical to those introduced before. The switches in the
diagram are used to introduce or remove feedback loops in the simulation.

where KP is a constant that defines the strength of the feedback and n defines the steepness
of the response curve. The negative feedback from x3 (ERK-PP) to x1 (Raf) leads to an
insertion in the equation for dx1/dt:

d

dt
x1 =

k1u(t)

[

1/

(

1 +

[
x3(t)

KN

]n)]

(x̄1 − x1(t))

Km1 +
(
x̄1 − x1(t)

) − k2x1(t)

Km2 + x1(t)
.

For all proteins involved, conservation relationships hold for a constant total of the acti-
vated and non-phosphorylated form.
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Fig. 8.15: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 8.13. The plots show
the response to a unit-step input signal. Left: without feedback loops. Right: as before
but with a positive feedback loop. Note the sharpening of the ERK response from the
introduction of positive feedback loop that is realized by RKIP.

Figure 8.14 shows a Simulink5 block diagram of the Ras/Raf/MEK/ERK signal trans-
duction pathway with RKIP regulation. Simulink is a graphical simulation environment,
using the mathematical programming language Matlab. Block diagrams such as those

5Matlab and Simulink files for all models and simulations shown here are available from
www.sbi.uni-rostock.de.
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Fig. 8.16: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 8.13. Left: with nega-
tive feedback loop. Right: with both, positive and negative feedback loops.

introduced in previous sections can be drawn and simulated directly from within an inter-
active graphical editor. The effect of changes to parameters, the removal or introduction
of feedback loops can be simulated conveniently. As illustrated Figure 8.15, with only
positive feedback added to the pathway and no transport delay, the pathway displays
switch-like behavior. Switching dynamics have been found in various intracellular systems
(e.g. [Fer96, TCN03]). Our previous observation that a positive feedback loop sharpens
the response, making it ultrasensitive, remains true in this more complex system. Because
the positive feedback loop effects only proteins from MEK downward, the Raf concentra-
tion profile has not been changed. Considering a negative feedback loop, no transport
delay and without the positive feedback loop in the system, we observe that negative
feedback can destabilize the response. What can also be observed are lower steady-state
values for Raf and ERK.
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Fig. 8.17: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 8.13. The plots show
the response to a unit-step input signal. Left: Negative feedback loop with transport delay
Td = 10min. Right: As before but with additional positive feedback loop. In both cases
n = p = 1.

Once a model is established, simulation allows quick studies of changes to the elements
and parameters. For example, one way to make the model more realistic is to introduce a
time delay between ERK near or inside the nucleus and its feedback effect on Raf further up
the pathway. In Figure 8.17, we introduce a transport delay in the negative feedback loop
with Td = 10min. We observed that transport delays lead to increased oscillatory behavior,
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turns the damped oscillations into sustained oscillations. In [SMT+03] this consideration
for nucleocytoplasmic transport was crucial in obtaining a predictive mathematical model
for the JAK-STAT pathway. Our next experiment is to change the feedback indices n
and p, that were also introduced above and which define the sharpness or sensitivity of
the feedback effect. In Figure 8.18 we find that without transport delay an increase from
n = 1 to n = 2 in the negative feedback loop also leads to sustained oscillations.
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Fig. 8.18: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 8.13. The plots show
the response to a unit-step input signal. Left: Negative feedback loop with Td = 0, n = 2,
p = 1. Right: As before but with additional positive feedback loop.

Our study demonstrates various sources of sustained oscillations: negative feedback
combined with ultrasensitivity, combined negative and positive feedback and transport
delays in negative feedback loops. Oscillations have been investigated in various systems
(e.g. [Gol96, WH00, Kho00]) and have been of interest in mathematical modelling for
some time (e.g. [GH83, Str00a]). An interesting question is to ask whether our model
applies to a single cell or a population of cells. If a single cell is an oscillator, one would
have to consider a population of coupled oscillators. Oscillations are not easy to detect and
require complex experimental set-ups. Simulation studies demonstrate the usefulness of
mathematical model in generating hypotheses of phenomena that have yet to be observed
in experiments. On the other hand, a simulation can also be used to support the design of
experiments, helping to decide which variables to measure and why. The role of feedback
in intracellular dynamics has been investigated for some time in the literature (e.g. [Gri68,
Tys79, BPM82, Tys83, TD90]) and will, no doubt, play an important role in (re)emerging
area of systems biology.

k1 = 2.5 Km1 = 10 k2 = 0.25 Km2 = 8 [Raf-1]T = 100
k3 = 0.025 Km3 = 15 k4 = 0.75 Km4 = 15 [MEK]T = 300
k5 = 0.025 Km5

= 15 k6 = 0.5 Km6 = 15 [ERK]T = 300
k7 = 0.5 Km7 = 15 k8 = 0.5 Km8 = 15 [RKIP]T = 60
k7f

= 0.025 KN = 9 KP = 9 n, p, Td

Table 8.1: Parameter values for the Ras/Raf/MEK/ERK pathway model. Concentrations
are in nM; k1,k3,k5,k7f

are in s−1; k2,k4,k6,k7,k8 in nM·s−1; Km1 to Km8 in nM. The right
column specifies total concentrations. Note that the purpose of this model is to illustrate
the role of feedback loops on protein concentration profiles only.
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9 Modules and Control Mechanisms

In the present chapter we are going to investigate a class of modules with particular
dynamics behaviors, such as switches, buzzers, oscillators etc. Rather than investigating
dynamic properties in the time domain and with the help of phase-plane analysis, the
present chapter introduces rate curves and stimulus-response curves for steady-states as a
tool for the analysis of dynamic modules and control mechanisms. The presentation here
is an extended version of the paper by Tyson et al. [TCN03]. The graphical representation
of the modules follows the description in [TCN03].

9.1 Linear Module

To start with, we consider a linear system in which the synthesis of the response molecule
R is facilitated by a stimulus S; illustrated by the following diagram:

R

S

The mathematical model, the rate equation is given as

dR

dt
= k0 + k1S − k2R . (9.1)

The term k0 describes a constant base level synthesis of the response component R. What
we describe here as a response could also be referred to as the production of R. Assuming
monomolecular reactions for conversion and degradation, the second term k1S is the con-
version of the stimulus component S into the response component. The degradation of R
is given by the last term −k2R. The rate of response is then the sum of the base level flux rate of response

and the conversion of S:
rate of response = k0 + k1S .

This allows us to write for the change of the response component

dR

dt
= rate of response− rate of degradation.

We can then compare the degradation rate and the response rate by plotting the rate curve rate curve

as function of R. This is shown in Figure 9.1. Note that hereafter we are going to suppress
units in plots for easier viewing. Depending on the number of participating components
the rate coefficient ki has the unit ‘per second’ divided by the unit of the component to
the power (n− 1). Michaelis-Menten constants have the same units as the corresponding
component. The solid line represents the degradation or removal of R, which is k2R. The
rate is a straight line with a slope equal to k2. The rate of response k0 +k1S (dashed lines)
is independent of R and thus a horizontal line. The points, where the rate of response and
the rate of degradation are equal are of particular interest:

rate of response = rate of degradation . (9.2)

At these points the system is in a steady-state such that no net change of concentrations
is measurable. This means response and degradation are in balance, although this does
not mean that no reaction occurs. This state is mathematically determined by the balance
equation

dR

dt
= rate of response− rate of degradation = 0 . (9.3)
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Fig. 9.1: Rate curve, comparing the response rate (dashed lines) and the degradation rate
(solid line) for the linear system (9.1). The intersections of both rates (black dots) are the
steady states for the given stimulus. The parameters for the system are: k0 = 0.01, k1 = 1,
k2 = 5.

Note that a system fulfilling condition (9.2) is either in equilibrium or in a steady-state.
There is no difference between both states from the mathematical point of view. If the
system is in one of these states, all sub-systems have to fulfil (9.2) too. The difference
between both states lies in the considered type of system. An equilibrium is defined for a
closed system, where there is no transport of matter and energy in and out of the system.
A closed system will relax to the equilibrium state and will not leave it by itself. Following
a small perturbation the system returns to the equilibrium. In an open system, such as aclosed/open system

cell, the transport of energy is possible. If we further consider the flow of matter, we get
a fully open system.

Here we want to describe the response of a system to an external stimulus, without
assumptions about flow of energy or matter, and therefore assume a fully open system,
that are characteristic of living systems. In such a system we usually reach a steady-state
dependent from the external stimulus. The system state is held by the signal and can be
far away from the equilibrium state. Only, if we close the system, for instance we choose
S = 0, the system relaxes into its equilibrium state. In this sense, the equilibrium is a
particular steady-state but if there is no flow of molecules in an out of the cell this could
mean that they die. As we will see later for the sigmoidal module, the conditions (9.2) and
(9.3) are not fully equivalent. Strictly speaking, if condition (9.2) is fulfilled, the system
is in a steady-state. It can but must not be in a steady-state if (9.3) is fulfilled.

Note that the dRr/dt of the ordinate in Figure 9.1 is not the net-rate dR/dt on the
left-hand side of (9.1). Figure 9.2 shows the net-rate as a function of R. Is the net rate
equal to zero, shown as horizontal dashed line in the plot, the production and degradation
rates are balanced. The system is in a steady-state.

Next we investigate the steady-state as a function of the stimulus. According to (9.1)
and (9.3) this state is obtained as a solution to the equation

0 = k0 + k1S − k2R .

The steady-state value of the response component is an increasing straight line with slope
k1/k2

Rss =
k0

k2
+

k1

k2
S . (9.4)

If the stimulus is increasing than the response is increasing too. For a finite constant
external source of R the response is Rss = k0/k2 at a signal strength S = 0. The represen-
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Fig. 9.2: The net rate for a linear system as function of the response component R for three
values of the signal S. If the net rate is greater than zero, R increases and if the net rate is
smaller than zero, R decreases. The value dR/dt = 0 (dashed horizontal line) corresponds
to the steady-state. Parameters: k0 = 0.01, k1 = 1, k2 = 5.

tation of the steady-state Rss as function of the the signal S is shown in Figure 9.3. This
kind of plot is called stimulus-response curve. Figure 9.3 shows the response of the linear stimulus-response curve

module for different ratios of k1/k2.
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Fig. 9.3: Stimulus-response curve for a linear module. Three ratios of k1/k2 are compared,
whereby the decay rate k2 is constant. The response Rss is the stronger the stronger the
signal S is. The horizontal line is the limit for a vanishing stimulus. Parameters: k0 = 1,
k2 = 1.

To this point, we have investigated static properties of the system. Investigating the
temporal evolution of R, we now assume that the signal S does not change over time. This
may also be interpreted as the response to an abrupt change of the stimulus, at t0 = 0, to
the given value, which is then constant (“step-response”). With this assumption, (9.1) is
a linear first-order differential equation for which the solution can be found analytically:

R(t) =
k0 + k1S

k2

(
1− exp {−k2t}

)
+ R0 exp {−k2t} , (9.5)

where R0 is the initial value of R at t0. The first term on the right-hand-side describes
the relaxation to the stationary state Rss (9.4) and the second term is the degradation of
the initial state R0. The relaxation time

τ =
1

k2
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is independent from external stimulus S. This quantity is an approximation to the time
needed to relax into the steady state. It can also be interpreted as the time the system is
able to react to perturbations. For t� 1/k2 we can expand the exponential function

e−x ≈ 1− x + o(x2) ,

which for a short initial period of time leads to

R(t) ≈ (k0 + k1S − k2R0) t + R0 . (9.6)

The response R(t) as function of the dimensionless time τ = k2 · t is shown in Figure 9.4.
We chose a fixed value for the decay rate coefficient k2 and vary the rate coefficient k1.
According to (9.5) the response component R(t) exponentially relaxes to the steady-states
(9.4). The solid straight lines are the asymptotic solutions for initial times (9.6). The
horizontal dashed lines correspond to the steady state. Analogue to Figure 9.3 the steady-
state depends on the ratio k1/k2. If the production dominates, k1 > k2, the steady-state
value is greater than the signal strength1 S.
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Fig. 9.4: The response of a linear module for a step change to S = 2 as function of the
dimensionless time τ = k2 · t. Three ratios of k1/k2 are shown. Parameters: k0 = 0.01,
k2 = 1, R0 = 1.5.

9.2 Hyperbolic Module

A hyperbolic module is slightly more complicated than the linear module discussed above.
The response or activation is now understood as a bimolecular reaction while degradation
is still considered monomolecular.

S

R R∗

This formulation is a popular model for activation or phosphorylation in signalling path-
ways. In this situation we denote by R∗ the activated or phosphorylated form and use R
to denote the non-activated form. Such a reaction system we describe as

dR∗

dt
= k1SR− k2R

∗ ,

1The first term k0/k2 in (9.4) is negligible for k0 = 0.01 and S = 2.
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where in the case of a signalling pathway, stimulus S corresponds to a kinase that facilitates
the phosphorylation of R. If we assume a constant total concentration,

RT = R∗ + R , (9.7)

we can rewrite the differential equation of the hyperbolic module:

dR∗

dt
= k1S(RT −R∗)− k2R

∗ , (9.8)

where the first term on the right-hand-side is the rate of response or activation and the
second the rate of deactivation. The corresponding rate curve is shown in Figure 9.5.
The rate of deactivation (solid line) has a slope of k2. According to the conservation law
(9.7) the response component is restricted to the range [0, RT ]. If all R molecules are
phosphorylated the response must be zero. The net rate of (9.8) is a straight line with a
slope −(k1S + k2). The conservation law restricts the response to [0, 1]. If the net rate
is greater than zero, activation dominates. The intersections with the zero line are the
steady-states values of R∗ for this system. From (9.8) we obtain for the steady-states a
hyperbolic function, which gives this module its name:

R∗
ss =

SRT

k2/k1 + S
. (9.9)

For the limits S → 0 and S → ∞ we can expand (9.9). For a signal strength S � k2/k1

the contribution of S in the denominator is negligible and the steady-states govern the
linear function

R∗
ss ≈

k1

k2
RT S . (9.10)

The ratio of the rate coefficients k1/k2 determines the slope of the asymptote. If for the
signal strength S � k1/k2, the signal S dominates the denominator. In this case all
proteins are phosphorylated and R∗

ss ≈ RT . The stimulus-response curve for a hyperbolic
module is shown in Figure 9.6. The straight lines are the asymptotic expansion (9.10).
If the rate coefficient of activation k1 greater than the rate coefficient of deactivation k2,
the hyperbolic properties of the system is in evidence. For small values of this ratio the
hyperbolic system looks like a linear system within the presented signal range.
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Fig. 9.5: Left: The rate curve for the hyperbolic module, assuming bimolecular activation
and monomolecular deactivation, for different signal strengths. The deactivation rate is
the solid line and the rate of response for three values of S are shown by dashed lines. The
intersections marked by the black dots are the steady states for the shown parameters k1 = 1,
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Fig. 9.6: The stimulus-response curve of a hyperbolic module (9.8) for different ratios of
k1/k2. The straight lines are the asymptotes for small signal strength (9.10). Parameters:
k1 = 1, RT = 1.

The temporal evolution of the hyperbolic module is described by the differential equa-
tion (9.8). This is again a first-order linear differential equation that we can solve analyt-
ically:

R∗(t) =
RT S

k2/k1 + S

(

1− exp {−(k2 + k1S)t}
)

+ R0 exp {−(k2 + k1S)t} . (9.11)

The first term describes the relaxation to the steady-state while the second term corre-
sponds to the degradation from the initial state. In contrast to the linear system the
relaxation time

τ =
1

k2 + k1S

is now dependent on the signal strength. The greater the signal strength, the faster the
steady-state is reached. For times t � τ we can expand the exponential function and
obtain for small initial times the asymptote

R∗(t) ≈
[

k1(RT −R∗)S − k2R0

]

t + R0 . (9.12)

The temporal evolution of the hyperbolic module is shown in Figure 9.7. We compare
solutions for three different ratios of the rate coefficients. For comparison, the small times
asymptotes (9.12) are also drawn.

9.3 Sigmoidal Module

The next module is an extension of the hyperbolic module. Both activation and deac-
tivation are here considered as Michaelis-Menten type kinetic reactions, leading to the
differential equation

dR∗

dt
=

k1SR

KM1 + R
− k2R

∗

KM2 + R∗

=
k1S(RT −R∗)

KM1 + RT −R∗
− k2R

∗

KM2 + R∗
, (9.13)

where on the second line, the conservation law (9.7) is used to relate the unphosphory-
lated form R of the response component to the phosphorylated form R∗. The parameter
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KM1, KM2 are Michaelis-Menten constants. The first term on the ride-hand-side describes
the activation, while the second term corresponds to the deactivation or dephosphoryla-
tion. A comparison of response and deactivation rate is shown by the rate curve in Figure
9.8. The conservation law (9.7) limits the possible values of R∗ to the interval [0, RT ].
If R∗ reaches the value RT , the activation rate has to be zero, independent of the signal
strength, since there is no more unphosphorylated R available.
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Fig. 9.8: The activation and deactivation rate of the sigmoidal module (9.13). The solid
line is the deactivation rate. The dashed lines are the rate of activation for different signal
strength. The black dots mark the points where both rates are in balance. Parameters:
k1 = 1, k2 = 1, KM1 = 0.05, KM2 = 0.05, RT = 1.

The steady-state of the sigmoidal module (9.13) is determined by the quadratic equa-
tion

0 =
k1S(RT −R∗)

KM1 + RT −R∗
− k2

KM2 + R∗
. (9.14)

For 0 < R∗ < RT , the solution is given by what is known as the Goldbeter-Koshland
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function:

R∗
ss

RT
=

k2

(

1 + KM1

RT

)

+ k1S
(

KM2

RT

)

2(k2 − k1S)

+

√
[

k2

(

1 + KM1

RT

)

+ k1S
(

KM2

RT

)]2
+ 4KM2

RT
(k2 − k1S)k1S

2(k2 − k1S)
. (9.15)

Since this expression is somewhat complicated we replace it by the short form

R∗
ss

RT
= G(k1S, k2, KM1/RT , KM2/RT ) . (9.16)

The solutions are shown in Figure 9.9. Additionally, the allowed range of R∗ is shown as
a grey-shaded region. Only one solution of (9.14) lies inside this region. The others do
not fulfil the physical restrictions on the response component and are therefore irrelevant
for a biological system. This system is our first example, where a mathematical solution
of (9.3) is not a steady-state. This demonstrates that the conditions (9.2) and (9.3) are
not fully equivalent. Strictly speaking, if condition (9.2) is fulfilled, the system is in a
steady-state. It can but must not be in a steady-state if (9.3) is fulfilled. In case of the
sigmoidal module we cannot derive the solution R∗(t) to differential equation (9.13) in an
analytical form.
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. . .) lies in physically
unreachable state-space. The grey shaded region shows the the reachable states that follow
from the conservation law.

The stimulus-response curve of the sigmoidal module is shown in Figure 9.10. The
sigmoidal shape of the curve is determined by the ratio of the Michaelis-Menten constants.
If the Michaelis constant of for the activation term is much smaller than the constant for
the deactivation term, the typical sigmoidal shape vanishes. On the other hand, if the
activation constant KM1 is much greater than KM2, we get a switch-like behavior for
the response function. It is for this reason that the system (9.13) is sometimes called
Goldbeter-Koshland switch [GK81].

9.4 Robust or Adaptive Module

In the next dynamic module we consider, R(t) is robust to changes in the stimulus. Looked
at from the perspective of X(t) the system is adaptive in that it tracks the stimulus. While
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Fig. 9.10: The stimulus-response curve for the sigmoidal system (9.13) for different ratios of
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RT = 1.

there is a transient response of R(t) to step-changes in S(t), the response returns eventually
to its steady state value Rss. Such a behavior can be realized by two parallel reaction paths
pushing the response in opposite directions:

S

X

R

For the simplest case we combine two linear systems

dR

dt
= k1S − k2XR ,

dX

dt
= k3S − k4X , (9.17)

where both systems are coupled through the parallel stimulus by S. The degradation
or deactivation of the response component R depends on the amount of X. Because an
increasing signal will also increase the amount of X, this simultaneously increases the
degradation rate of the response component. The rate curves for this module are shown
in Figure 9.11. For the response component R we have:

rate of response = k1S ,

rate of degradation = k2X R .

The response rate is a linear function of the stimulus S, with slope k1. The degradation rate
is independent of S but dependent on X. For this reason we vary the signal strength for the
rate of production and the amount X in Figure 9.11. The intersections of corresponding
curves are again the steady states of the system. In the representation of the net rate
(Figure 9.12) this is more visible. According to the underlying linear system, we obtain
again linear functions. The slope is given by k2X and the ordinates by k1S.

For the steady-state Rss we have to solve the system of balance equations

0=k1S − k2X R ,
0=k3S − k4X ,
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Fig. 9.11: Rate curve of a perfectly-adapted or robust system (9.17) for different external
stimuli S and amounts of X. The rate of response (dashed lines) is proportional to the
external signal and the rate coefficient k1, but constant with respect to R. The solid lines
are the rates of degradation for three different X. These linear functions have the slope k3X.
The steady states, marked by dots, have a constant R-value. Parameters: k1 = k2 = 2,
k3 = k4 = 1.

leading to a constant steady state response

Rss =
k1k4

k2k3
.

The steady state response is therefore determined by the ratios of the rate coefficients for
both channels. In Figure 9.13 we plot the temporal evolution of stimulus S, regulating
component X, and response component R. We see that the response is only transient and
returns eventually to its steady state. The height of the transient peak depends on X. The
larger X, the smaller the peak. The duration for which S is kept constant is denoted by
∆t and the height of the step-change by ∆S. The return of R(t) to its steady state is due
to the unimolecular decay that after some time is faster than the bimolecular degradation
of R. Looking at R from S, the system may be considered robust to changes in S. Looked
at from the perspective of X, the system shows perfect adaptation the changes.

9.5 Feedback Systems

In previous sections we considered systems without feedback. In the context of this chap-
ter, feedback means, that the response component influences its own production or degra-
dation. We refer to the feedback as positive or negative, depending on whether the response
amplified or suppressed [MVHA99]. Positive feedback can be realized through:

1. Acceleration of the production, for instance in an autocatalytic process,

2. Inhibition of the degradation.

Feedback is negative, if it weakens the response signal through:

1. Inhibition of the production,

2. Acceleration of the degradation.

In subsequent sections we discuss different feedback mechanisms, starting with positive
feedback, negative feedback followed by mixed negative and positive feedback.
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S0 = X0 = R0 = 0.

9.5.1 Positive Feedback/Feedforward - Switches

The present section is to discuss the two ways by which positive feedback/feedforward
control mechanisms can be realized. The acceleration of production of the response com-
ponent R is related to mutual activation, while the inhibition of degradation is related to
mutual inhibition. In both cases, the positive feedback/feedforward can create a switch-
like behavior, in which a certain level of stimulus can lead to a sudden change of the
response.

Mutual activation - positive feedback

We add to the linear system (9.1) a backward directed loop, i.e., feedback is realized
through an intermediate enzyme E. The response component activates the enzyme E, for
instance through phosphorylation. The activated enzyme E∗ on the other hand enhances
the synthesis of R. In this sense, both components S and R mutually activate R:
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R

S

E∗ E

To study the properties of this system we assume that the activation of the enzyme
E can be described by means of the Goldbeter-Koshland function (9.16) such that the
differential equation model of the mutually activated system is

dR

dt
= k0E

∗(R) + k1S − k2R (9.18)

where
E∗(R) = G(k3R, k4, J3, J4) .

The rate of degradation is a linear function of the response component,

rate of degradation = k2R ,

and depends only on R. The proportionality coefficient is again the rate coefficient k2. In
contrast to systems discussed in previous sections, the rate of production,

rate of production = k0E
∗(R) + k1S ,

is now a function of the response component itself as well as signal S. The comparison
of both rates, shown in Figure 9.14, illustrates new properties. Dependent on the signal
strength S, the number of intersections between the curves varies between one and three.
Let us, for the time being, consider these as steady states, although we have to refine the
meaning of steady-states.
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Fig. 9.14: Comparison of the rate of degradation (solid line) and the rate of production for
different signal strengths (dashed lines), for a mutually activated system (9.18). Parameters:
k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.

Examining the net-rate of the mutually activated system, with the same parameters
as in Figure 9.14, the resulting curves are shown in Figure 9.15. There is a signal strength,
for which there are cases with a net rate equal to zero. We also notice that there is a region
for which the net-rate increases with R. For this region the lines are dashed segments.
Mathematically this corresponds to the condition

d

dR

dR

dt
> 0 ,
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where the derivations are carried out in the given order from left to right. For the consid-
ered system (9.18) we have

d

dR

dR

dt
= k0

dE∗

dR
− k2 . (9.19)

This is an expression that is independent of the signal strength. The derivative of dE∗/dR
can be derived analytically, although this is cumbersome and therefore avoided here. To
see what happens, if a zero net-rate is located within this range, let us assume, that we are
in steady state. If we perturb the system a little by increasing the response component,
the rate of degradation will decrease. The system cannot return to his former state. On
the other hand, if we decrease the response component the rate of production also decrease
and the system cannot return. This state is unstable and hence not a steady or equilibrium
state. The necessary condition for a stable (bio)chemical system is thus

d

dR

dR

dt
< 0 .

Only, if this condition is fulfilled, the system returns to the steady state for small per-
turbations to R. In Figure 9.16 we illustrate the differences between stable and unstable
states, using the analogy of a ball in a landscape of changing altitudes. The only stable
equilibrium2 states are the minima of the height function. As we have seen above, the
ball is moving back to the deepest point of the valley after a small perturbation. The
position on the top of the mountain is very unstable. For a comprehensive discussion of
these issues see [GS94]
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Fig. 9.15: The net-rate as function of the response component R for the system (9.18). The
results for three different signal strengths are plotted. The curves are separated into two
parts. The solid line represents stable solutions and the dashed lines unstable solutions.
Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.

Returning to our mutually activated module (9.18), in Figure 9.15 a stimulus indepen-
dent region occurred, for which no stable solution exits. For the chosen parameter values
it lies within the interval 0.147 < R < 0.249. On the other hand, for values of R outside
this region we obtain stable solutions. Dependent on the signal strength, the net rate has
now one or two stable zeros. Let us analyze the net-rate for a zero stimulus of Figure 9.15
in more detail. As S increases, the location of the zero moves to the right. If the value
of the minima is positive, no steady state exists in the lower branch. The steady states of
the mutually activated system are obtained from the balance equation

0 = k0E
∗(R) + k1S − k2R . (9.20)

2We assume, that the motion of the ball depends from the height only and that there are no further
macroscopic forces. The system is then closed and can reach a state with minimal potential energy, an
equilibrium state. Nevertheless, there can be more than one equilibrium states.
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Fig. 9.16: Illustration of stable and unstable states for a ball in a landscape of changing
altitudes. The maximum and the minima of this schematic mountain scenery fulfil the
necessary condition dh/dx = 0, where h denotes the height and x the horizontal position.
But only the minima are stable equilibrium states, because the ball will return back from
alone to his position after a small perturbation. The maximum is a unstable state; a small
perturbation means the ball drops down to one of the equilibrium states.

The analytic solution is lengthy and complicated so that we restrict our discussion to few
important features. Equation (9.20) has three solutions. One is a full real function. The
others are partly complex. Because the response component must be a real measurable
quantity, such as a concentration, only the real parts are relevant for the analysis. All three
solutions are shown in the signal-response curve of Figure 9.17. The mutually activated
system (9.18) has two stable branches plotted as solid lines with an unstable branch,
shown as a dashed line. Such a system is called bistable. As the stimulus S increases,bistable switch

the response is low until a critical level of stimulus is reached. At this point the module’s
behavior changes with a sudden increase of response R. If thereafter S decreases, the
response remains high, the switch is irreversible. Note that the sigmoidal module can act
as a reversible switch. The plot in Figure 9.17 as a (one-parameter) bifurcation diagram.
The critical point is in this context called a bifurcation point.
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Fig. 9.17: Signal-response curve for the mutually activated system (9.18). The balance
equation (9.20) has three branches. The upper one is the full real solution. The others are
only in parts real. The steady-states (stable solutions) are shown as solid lines. The unstable
solution is drawn as a dashed line. Because of the two stable branches, the system is called
bistable. The grey region of the plots denotes the gap between the upper and the lower
stable branches. Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05,
J4 = 0.05.

Note that so far we have looked at steady values of S and R and whenever we spoke of
a change in S, the switch-like behavior was discussed in the stimulus-response plane, not in
the time domain. The transition that occurs with changes to S were not explicitly included
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in our discussion. Figure 9.18 shows numerical solutions to the differential equations (9.18)
for different initial values of R. Figure 9.18 displays solutions to the system with mutual
activation through positive feedback. The range of the initial response component R0

can be separated into two parts. The lower part relaxes to the steady state given by the
lower branch of the bifurcation diagram, while for values higher than Rcrit, the system
moves to the upper branch in Figure 9.17. Both parts are separated by the unstable
solution of the balance equation (9.20) not by the critical response Rcrit. The unstable
solution is a separatrix in the phase space. At this point it is a good opportunity to point
out why stimulus-response curves are valuable. As can be seen from the time-plots, the
behavior of the system displayed in those plots depends critically on the stimulus and
initial conditions. The bifurcation plot on the other hand summarizes the behavior in an
efficient way.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

time t

R
(t)

R
crit

R
ss

(S)

R(0)=0

R(0)=0.1
R(0)=0.184

R(0)=0.185

R(0)=0.2

Fig. 9.18: Relaxation of the mutual-activation module into the steady state for different
initial response signals R0. The unstable solution of the balance equation (9.20) acts as a
separatrix, which separates trajectories. For R0 < Rss(S) the system achieves a steady state
on the lower branch. Outside this range the upper branch becomes the final state. For com-
parison, the unstable solution and the critical response signal Rcrit are shown. Parameters:
k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05, S = 6.

Figure 9.19 illustrates the irreversibility of the considered system. We compare the
response of the system on a sub- and a supercritical signal step change at t = 0. The initial
response signal is R0 = 0. The signal remains constant until the system reaches a steady
state. After a certain time, t = 15, the signal is switched and the response relaxes to a
new steady state. The sub-critically stimulated system goes back to a zero response signal,
while the supercritical stimulus shows the expected behavior of a continued high level. In
the second case the nonlinearity of the system is visible. Looking at the response with the
subcritical stimulus, one might interpret the temporal evolution R(t) as the consequence
of a linear system. Figure 9.20 illustrates the fact that in addition to a critical value of S,
the stimulus must persist for a sufficient period of time if the full bistable behavior of the
system is to be observed.

Mutual inhibition - positive feedforward

From the above definition of positive feedback/feedforward control, there is another pos-
sibility to increase the response signal. In the previous section we increased the rate of
production via an intermediate enzyme. Now, we use a similar model to inhibit degrada-
tion. Here the response component is acting ‘forward’ via E:
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Fig. 9.19: The time evolution for two different stimuli, the first subcritical and the second
supercritical. Once the response relaxes into the S-dependent steady state, the signal is
switched off. The critical response signal Rcrit is important for the change of the behavior
of the system. At this point the activation/deactivation strongly increase from a lower to a
high level. Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05,
S = 14, R0 = 0.
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Fig. 9.20: The temporal evolution of the mutually activated system (9.18) for a supercritical
signal S = 14 of different durations. The activated state is reached only and only if the
separatrix Rss(0) is exceeded. Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2,
J3 = 0.05, J4 = 0.05, S = 14, R0 = 0.

R

S

E∗ E

For mutual inhibition, the response component R facilitates the activation of enzyme E.
The activated E∗ in turn increases R. The corresponding system of differential equations
is

dR

dt
= k0 + k1S −

[
k2 + k′

2 E(R)
]
R (9.21)

E(R) = G(k3, k4 R, J3, J4) ,

where again we assume that the enzyme reaction is much faster than the signalling reaction.
Therefore we can use the steady state solution of this reaction given by the Goldbeter-
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Koshland function. The term k′
2R describes the direct decay of R and k′

2E(R)R the
enzyme catalyzed degradation. The rate curve of this system is shown in Figure 9.21.
The solid line is the rate of degradation and the dashed lines are the production rates
for different signal strengths. For the mutually inhibited system, the rate of production
is independent of the response component. Again, there are more than one intersection
for some values of the stimulus. The corresponding balance equation is the necessary
condition for a steady state:

0 = k0 + k1S −
[
k2 + k′

2E(R)
]
R (9.22)
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Fig. 9.21: The rate curve of a mutually inhibited system (9.21). The solid line is the rate
of degradation. The dashed lines are the R-independent production rates for different signal
strength S. Note, the change of the number of intersections (black dots) as a function of the
signal.

A more detailed study the properties of the system are obtained from the net rate
curve shown in Figure 9.22. We plotted (9.21) as function of the response component R.
The stability criterion

d

dR

dR

dt
< 0

is fulfilled by the solid lines. For the dashed lines we have d/dR dR/dt > 0. Analog to
the discussion in the previous section, the system exhibits instabilities. The derivative

d

dR

dR

dt
= −

[

k2 + k′
2E(R) + k′

2R
dE(R)

dR

]

(9.23)

is independent of the stimulus S. As described above, the stability criterion has to be
fulfilled for a stable steady state. Otherwise, the state is referred to as unstable.

Up to now, we only discussed the difference between the stable and the unstable steady
state solutions. We pointed out, that the extrema,

d

dR

dR

dt
= 0 ,

of the net rate, limit the unstable range. But, for the critical point we gave no further
conditions. We want to do this now but before that we repeat a restriction to our solution.
It has to be physically relevant and thus the solution has to be positive, i.e., some quantity
proportional to the molecule number (e.g. concentration, density, . . .). From the net rate
plot we obtain the critical point as zeros of the equation that describes the reaction rate
as function of the signal strength. From the balance equation (9.22), it is this point that
is limiting the real solution to the equation. The condition is fulfilled for two points of
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Fig. 9.22: The net rate curve of a mutually inhibited system (9.21) as a function of the
response component for different signal strengths. The solid line are stable ranges of the net
rate, the dashed lines correspond to unstable regions. The intersection between the net rate
and the zero line are solutions of the balance equation (9.22).

the mutually inhibited system (9.21), one minimum and one maximum. The bifurcation
points of the mutually inhibited system both satisfy the physical restrictions. We could
expect, that the stimulus response curve for this system has two critical points. The
stimulus-response curve is shown in Figure 9.23. The stables branches of the balance
equation (9.22) are drawn as solid lines. The system is bistable for Scrit2 < S < Scrit1

and monostable for all other stimuli. The dashed lines are the unstable solutions limits,
described by the critical points Scrit1 and Scrit2. If we increase the strength of the stimulus,
starting from the upper level, the steady state response jumps at the first critical point
to a high level output. If the stimulus decreases later, the response decreases accordingly.
In contrast to the one-way switch in the previous section, the response now goes back
to low level if the signal strength is smaller than the second critical point. It is for this
reason that we call this system a toggle switch. The monostable solutions are reversible,toggle switch

the response component is uniquely determined by the signal strength.
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Fig. 9.23: The stimulus-response curve for a mutually inhibited system (9.21). The system
is partial bistable. The stable branches are drawn as solid lines and the unstable as dashed
lines. The critical points Scrit1 and Scrit2 limit the unstable solution. The horizontal and
vertical dashed lines corresponds to the signal and response strength of the points. The
forbidden range of the steady state response is denoted as grey box. Parameter: k0 = 0,
k1 = 0.05, k2 = 0.06, k′

2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01.
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Next, we discuss temporal properties of system (9.21). We assume that the activation
of the enzyme is a much faster reaction than the conversion of the signal component S
such that we can describe it with the Goldbeter-Koshland function. We first investigate
the behavior of the response to a stimulus between the critical points as a function of
the initial response component R0. For subcritical values S < Scrit2 and supercritical
S > Scrit1 the system is monostable. The response signal moves to the unique steady state
for a constant stimulus. The numerical results are plotted in Figure 9.24. Dependent
on the initial value, the response signal evolves to the lower or upper steady state. The
unstable stimulus dependent solution is again a seperatrix. If R0 > Rss(S) the upper
branch is reached, otherwise the lower branch. Figure 9.25 shows the temporal evolution
of the system for successive step-like stimuli of different strengths. Again, we let relax the
system to the corresponding steady state and change the stimulus thereafter. In Figure
9.27 the influence of the duration of stimulus is investigated. We start with an initial value
R0 = 0 and an external signal S = 0.6. This is a subcritical stimulus and the response
signal keep on the lower branch. We then increase the stimulus to a critical strength of
S = 1.2. The response signal remains on the lower level. With the following supercritical
signal we force the system to the upper branch of the steady state response. After some
time we switch back to the critical signal. As expected, the system now settles to a steady
state on the upper branch. The system remembers its previous state. The sub critical
stimulus brings the system back on the lower branch. Finally, we switched off the stimulus
and the response signal returns to zero.
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Fig. 9.24: The temporal evolution of the mutually inhibited module (9.21), dependent on
the initial response signal R0. We choose a signal strength between the two critical points
and hence the system is bistable. The unstable solution of the balance equation (9.22) is
a seperatrix (dashed horizontal line). For initial states greater than this value the system
tends to the upper steady state. In the other case the lower steady state is reached. At
the corresponding response value of the critical points (dashed horizontal lines) the response
signal changes from unstable to stable behavior. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06,
k′

2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01 and S = 1.

The temporal evolution of the response component R for different signal strength is
shown in Figure 9.26. We choose an example for each range of the stimulus strength.
Further on we investigate the behavior for two initial values of the response signal R0 = 0
(solid lines) and R0 = 0.7 (dashed lines). The second initial value is above the unstable
region of the steady state response shown as grey box. The limiting horizontal lines denotes
Rcrit1 and Rcrit1. In both situations the response component settles to the same steady
state if we apply a sub- and a supercritical signal. For a critical stimulus the steady state
depends on the initial state. The response component changes its behavior within the
response gap. In this region it is unstable and does never settle to a limiting value. The
value of the inflection points is given by the critical points.
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Fig. 9.25: Temporal response for the mutually inhibited system (9.21), given a step-like
time dependent stimulus S. The steady state for critical signals (here S = 1.2) is dependent
on the previous state. In the case of subcritical and supercritical stimuli the steady state
is uniquely determined by the signal strength. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06,
k′

2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01.

Finally, in Figure 9.27 we vary the duration of a step-like signal. We start with the
high level response signal R0 = 1.1 and the subcritical external stimulus S = 0.5. After
the time ∆t we switch back to the critical stimulus S = 1.4. It follows our previous
discussion, that the response component R is decreasing to its lower level steady state
if the stimulus is constant. This is clearly seen for long signal durations, for instance
∆t = 45. If we switch to a critical stimulus the system will go to a steady state. Which
one, depends on ∆t. Only, if the response signal falls below the separatrix, the lower
branch of the bistable system (Figure 9.23) defines the new steady state. As long as the
response function has not enough time to do this, the system returns to the high level
response. We found a similar behavior for the mutually activated system (9.18) in Figure
9.20. A stimulus greater than the critical stimulus value is not enough to change the
properties of the system. The duration of the signal must be long enough. The separatrix
works like a filter. Fluctuations are suppressed and do not lead to a change in the behavior
of the system.

Dependency from parameters

The previous two sections discussed two systems with positive feedback/feedforward mech-
anisms, leading to bistability. In the present section we investigate the dependency of this
special systems property on the rate coefficients ki. As an example for the two systems,
let us consider the mutually activated system (9.18) and vary the coefficient k0. The
numerical simulations are shown in Figure 9.28. For a better comparison we extend the
graphical representation to negative values of the external signal strength S. Remember,
the signal strength is per definition a positive definite quantity. Especially, if we consider
biochemical networks the external signal is a concentration of molecules.

For k0 = 0 we have the system discussed in the previous section. The system behaves
like an irreversible switch, once activated the system never return to the inactivated state.
But if we extend our calculations to negative signals we obtain the same hysteresis-like
behavior as for the mutually inhibited system. What happens, if we change the parameter
k0? In Figure 9.28 we show an example investigation.

Beginning with k0 = 0.4, the situation is equivalent to Figure 9.17. For the second
curve, k0 is chosen such that the second critical point is reached at S = 0. For k0 = 0.2,
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Fig. 9.26: Temporal evolution of the response signal for different signal strengths and initial
values. The smallest signal is subcritical, the next is critical and the last is supercritical.
Independent on the initial state, the system settles to the same steady state for the subcritical
and analogue for the supercritical stimulus. For the critical signal the system shows again
memory and reaches two different steady states. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06,
k′

2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01.

the mutually activated system has a hysteresis-like behavior, equivalent to (9.21) (Figure
9.23). By changing one parameter we therefore alter the system from an irreversible switch
to a reversible. If we further decrease k0 the critical points coincide. The system is then
continuous. For smaller values of the rate coefficient k0 no more critical points exist. For
k0 = 0 the system (9.18) is linear:

lim
k0→0

Rss =
k1

k2
S . (9.24)

Equation (9.24) represents an approximation for small signal strengths S. In the limit
E(R) is a small quantity. The product of k0 and E(R) is negligible in comparison to the
remaining terms in (9.18). The then linear system has a signal-response curve correspond-
ing to (9.24).

The simple investigation of the properties of a mutually activated system illustrates
a major problem in modelling biochemical networks: Often a behavior can be realized
by more than one kinetic model. The falsification of these models is usually not possible
with kinetic methods alone. The concentration of some hypothetic intermediates is not
measurable with direct kinetic methods. As we have seen, by changing one rate coefficient,
the behavior of the system change dramatically. In biochemical networks the coefficients
depend on properties such as temperature, volume and pressure.

9.5.2 Negative Feedback - Oscillations

According to the definition of Section 9.5, negative feedback means the response counter-
acts the effect of the stimulus. There are two ways in which a negative influence can be
exerted: through an acceleration of degradation and a deceleration of production of the
response component.

Homoeostasis

In homeostasis, the response on an external signal (stimulus) is approximately constant homeostasis

over a wide range of signal strength. This behavior may also be described as a kind
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Fig. 9.27: Temporal evolution of the mutually inhibited module (9.21) for a time dependent
subcritical signal S = 0.5 with varying duration. After the time ∆t we apply the critical
stimulus S = 1.4. Note, the final steady states depends on the duration of the subcritical
stimulus. Only if ∆t is long enough, the response signal falls below the separatrix given
by the unstable solution Rss(1.4). After a short signal the system returns to its high level
response. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06, k′

2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10,
J4 = 0.01, R0 = 1.1.
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Fig. 9.28: Bistability of the mutually activated system, dependent on parameter k0. The
stable branches are drawn as solid lines, unstable as dashed lines. The corresponding critical
points are shown as circles. With decreasing k0 the system changes from an irreversible to
a reversible switch. The asymptotic system k0 = 0 is linear. Parameters: k1 = 0.01, k2 = 1,
k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.
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of imperfect adaption. In contrast to the perfectly-adapted system (9.17) the response
component is not changed in response to step-change of the stimulus S (cf. Figure 9.13):

R

S

E E∗

Such a system can be described by the coupled system of differential equations

dR

dt
= k0E − k2SR

dE

dt
=

k3

(
1− E

)

J3 + 1− E
− k4 RE

J4 + E







(9.25)

where the response component R inhibits the enzyme catalyzing its synthesis. In (9.25)
E is normalized to the total enzyme concentration ET .

If ones assumes, that the enzyme production reaches its steady state much faster than
the whole system, we can simplify (9.25) using (9.16). The enzyme concentration is now

dR

dt
= k0E(R)− k2SR

dE(R)

dt
= G(k3, k4R, J3, J4)







(9.26)

A comparison of production and degradation rate is shown in Figure 9.29.
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Fig. 9.29: Comparison of rate of response and degradation for the homoeostatic system
(9.26) for stimulus S. The solid lines are the degradation rates, (9.26), i.e., linear functions
with slope k2 · S. The rate of response depends on R and has the typical sigmoidal shape
of (9.16). The intersections, denoted by dots, are again steady state solutions. Parameters:
k0 = k2 = 1, k3 = 0.5, k4 = 1, J3 = J4 = 0.01, ET = 1.

The rate of production

rate of production = k0E(R)

implicitly depends from the response component R. The result is a sigmoidal curve. The
degradation rate

rate of degradation = k2SR
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is a linear function with slope k2S. For those chosen range, it is assumed that the steady
state response is nearly independent from the external signal. The net rate, shown in
Figure 9.30, displays an analogues behavior. Again, we compare the influence of different
stimuli to the overall rate. The intersections with the dashed line, where the rate is zero,
represent the steady states. The corresponding balance equation

0 = k0E(R)− k2SR (9.27)

can be transformed into
k2

k0
S =

E(R)

R
(9.28)

A solution for the dependence on the response component can only be found numerically.
On the other hand, (9.28) gives a rule to calculate the strength of the stimulus S for known
R. This implies that the ratio of the rate coefficients k0 and k2 plays an important role for
the behavior of the considered system. The corresponding signal-response curve is shown
in Figure 9.31, where we the ratio k2/k0 is varied. The ratio determines the length of the
expected plateau. The amplitude is weakly affected. For small signals the steady state
response is singular and for strong signals it tends to zero.
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Fig. 9.30: Net rate for the homoeostatic system (9.26) for different external stimuli. The
intersections with the horizontal dashed line are the corresponding steady states. The steady
states are only weakly dependent on the stimulus S. Parameters: k0 = k2 = 1, k3 = 0.5,
k4 = 1, J3 = J4 = 0.01, ET = 1.

For a discussion of steady state properties for a homoeostatic system we neglected the
time dependence of the enzyme activation/deactivation reaction in (9.25). For the study
of the temporal behavior of such a system we do not make the assumption of a much faster
reversible enzymatic reaction. Before we continue this, let us return to the steady state
properties, derived from the coupled balance equations

0 = k0E − k2SR

0 =
k3

(
ET − E

)

J3 + ET − E
− k4RE

J4 + E

The solution of the enzymatic equation is again the Goldbeter-Koshland function we used
in (9.26). After insertion into the first equation we obtain again (9.28). The steady state
solution of a coupled system of equations remains therefore unaffected. We thus expect,
that the system will reach the same steady state in its temporal evolution. In Figure 9.32
we plot numerical solutions of (9.25) for the response component and compare it with
solutions of (9.26). The differences in temporal behavior can be divided into three classes,
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Fig. 9.31: Stimulus-response curve for system (9.26) as a function of different ratios of rate
coefficients k0 and k2. The steady state response shows, for small ratios, a plateau over a
range of the signal S. The plateau decreases with increasing ratio and eventually disappears.
Parameters: k0 = 1, k3 = 0.5, k4 = 1, J3 = J4 = 0.01, ET = 1.

corresponding to the three ranges in the stimulus-response curve. In the homoeostatic
range, the system displays damped oscillations around the steady state. Common for all
three cases is a difference in the relaxation time. The system (9.25) takes longer than
(9.26) to reach the steady state. The simplification made in (9.26) makes it easier to
handle the differential equations and does not affect the steady state. On the other hand,
no oscillations occur with this approximation. Nevertheless, the assumption of a much
faster process is often used to simplify the treatment.
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Fig. 9.32: Comparison of temporal evolution of homoeostatic system (9.25) and its simplified
version (9.26) for different signal strengths S. The solutions of the full system are drawn
as solid lines, while dashed lines are used for the simplified case. Parameters: k0 = k2 = 1,
k3 = 0.5, k4 = 1, J3 = J4 = 0.01, ET = 1.

Negative Feedback Oscillator

The previous section showed how negative feedback can introduce damped oscillations.
We here show how negative feedback can lead to stable oscillations. Therefore we consider
a system of three components
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S

X

Y Y ∗

R R∗

The mathematical model for this system is defined by the following equations

dX

dt
= k0 + k1S −

(
k2 + k′

2R
∗
)
X

dY ∗

dt
=

k2X (YT − Y ∗)

KM3 + YT − Y ∗
− k4Y

∗

KM4 + Y ∗

dR∗

dt
=

k5Y
∗ (RT −R∗)

KM5 + RT −R∗
− k6R

∗

KM6 + R∗







(9.29)

where X activates the protein Y . The activated protein Y ∗ activates the next protein
R. Its activated form catalyzes the degradation of X. Another possible way to close
the negative feedback loop is the inhibition of production from S. We focus on the first
case. A numerical simulation of (9.29) is given in Figure 9.33. All three components show
oscillations. The third component Y ∗ introduces a time delay in the feedback loop, causing
the control system repeatedly to over- and undershoot its steady state. Within the shown
interval the oscillation are damped. The system takes a certain time to establish stable
oscillations, depending on the chosen set of parameters. For instance, if one increases the
rate coefficient k′

2 to 20, the amplitude will initially increase until the limit cycle is reached.
A variation of k0 influences the strength of damping or amplifying and the amplitude of
the limit cycle. In the phase-plane representation, Figure 9.34, it is shown, how the three
components settle towards a limit cycle.
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Fig. 9.33: The temporal evolution of the negative feedback oscillator (9.29). All three
components X, Y ∗, and R∗ perform oscillations. Within the shown time interval these
oscillations are damped. Parameters: k0 = 0, k1 = 1, k2 = 0.01, k′

2 = 10, k3 = 0.1, k4 = 0.2,
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Y ∗ = 0.6, R∗ = 0.1.
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Fig. 9.34: Phase-plane representation of numerical solution of (9.29). We combine three
possible combinations in this figure. All components perform oscillations and tend to the
limit cycle within a certain number of oscillations. Parameters: k0 = 0, k1 = 1, k2 = 0.01,
k′

2 = 10, k3 = 0.1, k4 = 0.2, k5 = 0.1, k6 = 0.05, KM3 = KM4 = KM5 = KM6 = 0.01,
YT = RT = 1, S = 5, X0 = 2, Y ∗ = 0.6, R∗ = 0.1.

Let us now focus on steady state properties. The state steady state are derived from
the set of coupled balance equations

0 = k0 + k1S −
(
k2 + k′

2 R∗
)
X

0 =
k2X (YT − Y ∗)

KM3 + YT − Y ∗
− k4Y

∗

KM4 + Y ∗

0 =
k5Y

∗ (RT −R∗)

KM5 + RT −R∗
− k6R

∗

KM6 + R∗

(9.30)

The balance equation for each subsystem itself is solvable but the steady state solution of
the coupled system for the response component is lengthy and complicated. Therefore we
prefer a numerical solution of (9.30). The corresponding stimulus-response curve is plotted
in Figure 9.35. The solution is separated into two stable (solid line) and an unstable
range (dashed line). In the unstable range the system performs stable oscillations. The
amplitude of the oscillation depends on the stimulus S as shown by the dashed-dotted
curve.

9.5.3 Mixed Control Mechanisms

In the present section, different feedback mechanisms are combined.

Activator-Inhibitor-Oscillator

Our first example combines the mutually activated system (9.18) and an autoinhibition of
the response component.

X
S

R

E∗ E
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Fig. 9.35: Stimulus-response curve as function of the external signal strength S for the
negative feedback oscillator (9.29). The straight line is the numerical steady state solution
of (9.30). The solid parts denote stable ranges. In the interval 0.26 < S < 6, the solution is
unstable and the system performs oscillations, as in Figure 9.33. The maxima and minima
as a function S are plotted as the dash-dotted curve. Parameters: k0 = 0, k1 = 1, k2 = 0.01,
k′

2 = 10, k3 = 0.1, k4 = 0.2, k5 = 0.1, k6 = 0.05, KM3 = KM4 = KM5 = KM5 = 0.01.

The response component R is produced in an autocatalytic process. It activates the en-
zyme E∗ which accelerate the production of R. On the other hand, the response component
promotes the production of the inhibitor X at the same time. The inhibitor speeds up the
removal of R. Again, we assume that the enzyme is always in its steady state described by
the relation (9.16), assuming the activation/deactivation process is much faster than the
other reactions in the system. This assumption simplifies our further discussion and re-
strict the (mathematical) dimension of the corresponding system of differential equations

dR

dt
= k0E

∗(R) + k1S −
(
k2 + k′

2X
)
R

dX

dt
= k5R− k6X

E∗(R) = G(k3R, k4, J3, J4)

(9.31)

For this composed system an analysis in terms of rate of production/degradation and the
net rate is only possible in three dimensions3. The assumption of the steady state for the
enzyme avoids an additional fourth dimension. The temporal evolution of the response
signal R(t) and the inhibitor X(t) is numerically solvable from the coupled differential
equations (9.31). For the chosen set of parameters we obtain stable oscillations in Figure
9.36 for both components. If the amount of R small, the production of the response com-
ponent is the main process. The degradation of the inhibitor is faster than its production.
This results in an increase of the response component. With increasing R also the pro-
duction of the inhibitor is increasing. The acceleration of the degradation of R leads to a
decrease of the response component, returning us to where we started.

The phase plane representation of the oscillations is shown in Figure 9.37. Additionally
to the limit cycle of the oscillation we plotted the steady states as a function of the response
component R and X. The steady states are obtained from the balance equations

dR

dt
= k0E

∗(R) + k1S −
(
k2 + k′

2 X
)
R = 0 (9.32)

3One for the response component R, one for the rate of change of the response component, and one for
the rate of change of the inhibitor X.
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Fig. 9.36: The temporal evolution of system of an activator and an inhibitor (9.31) as
function of time. The solid line is the response component and the dashed line the inhibitor.
After a short starting time the system carries out stable oscillations. Parameters: k0 = 4,
k1 = k2 = k′

2 = k3 = k4 = 1, k5 = 0.1, k6 = 0.075, J3 = J4 = 0.3, S = 0.2, R0 = 0, X0 = 1.2.

and
dX

dt
= k5R− k6X = 0 (9.33)

Equation (9.33) for the inhibitor can be solved analytically leading to a straight line with
slope k6/k5:

R =
k6

k5
X . (9.34)

In Figure 9.37, the closed curve is the phase-plane representation of the temporal evolution
shown in Figure 9.36. After an initial time the system reaches a stable limit cycle. The
straight line and the line that is in parts dashed, are the stimulus-response curves of the
subsystems. The straight line is the analytic solution (9.34). The solution of (9.32) is
numerically found. The stable solutions are shown as solid sections of the line and the
unstable solution as a dashed line. The corresponding critical points are shown as filled
dots. The solutions of the balance equations (9.32) and (9.33) have an intersection, which
is the steady state solution shown as a dot on the straight line. For the chosen parameters
the steady-state is unstable leading to an oscillating behavior. As one subsystem tries to
reach one of its two stable states, the resulting production or degradation of X forces it
back to the unstable state and the cycle starts again. The intersection depends on the
signal strength S. By an increase or decrease of S we move the solution of (9.32) in Figure
9.37 until the intersection is stable. For the corresponding signal strengths the activator-
inhibitor system has an stable steady state. No more stable oscillations occur. Such a
situation is shown in Figure 9.38. At the intersection both solutions are stable, although
near the critical point. The system (9.31) shows damped oscillations and reaches a stable
steady state. The phase plane shows a typical spiralling curve with decreasing amplitude.
For still higher signal strengths the intersection moves further away from the critical point
and the damped oscillations will disappear.

As discussed above, the oscillatory behavior of the considered system (9.31) strongly
depends on the strength of external signal S. Oscillations occur only if the intersection
between the steady states of each subsystem is on the unstable branch of (9.32). The
parameter we can change is the external signal S. The internal parameter we assume as
inherent, uniquely determined by conditions like temperature, pH-value and so on. The
stimulus-response curve shows a new qualitative property. There are intervals in the signal
strength S, where the system tends to a steady state. For the chosen values of the rate
coefficients, see Figure 9.39, this behavior is established in the intervals 0 < S < 0.066 and
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Fig. 9.37: Phase-plane representation and stimulus-response curve for the activator-inhibitor
system (9.31) with a constant external signal strength. Parameters: k0 = 4, k1 = k2 = k′

2 =
k3 = k4 = 1, k5 = 0.1, k6 = 0.075, J3 = J4 = 0.3, S = 0.2, X0 = 1.2, R0 = 0.
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Fig. 9.38: Phase-plane representation and stimulus-response curves for the activator-
inhibitor subsystems (9.32)-(9.33). In contrast to Figure 9.37 the system reaches a stable
steady state. Starting with R0 the system has damped oscillations around this stable state
and ends finally in it. Parameters: k0 = 4, k1 = k2 = k′

2 = k3 = k4 = 1, k5 = 0.1, k6 = 0.075,
J3 = J4 = 0.3, S = 0.43, X0 = 1.2, R0 = 0.5.

S > 0.41. In the intermediate range the response signal R oscillates around the unstable
steady state, shown as a dashed line in Figure 9.39. The amplitude and minimal (Rmin)
and maximal (Rmax) values are functions of the stimulus signal S.

Substrate-Depletion-Oscillator

As second example of an oscillating mixed system we choose a substrate-depletion-oscillator.

S

X R

E∗ E

The signalling component S is converted into the intermediate X. From the intermediate
the response component R is produced. On the other hand the response component
activates the enzyme E∗, increasing the conversion rate from X to R. For such a reaction
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Fig. 9.39: The stimulus-response curve for the system (9.31). The steady state solutions of
the coupled system of equation (9.32) and (9.33). The stable solutions are drawn as solid and
the unstable solution as the dashed section of the line. The closed curve shows the maximal
and minimal values of the response signal in the case of stable oscillations. On the critical
points S1 ≈ 0.066 and S2 ≈ 0.41 the system changes is behavior abruptly. Parameters:
k0 = 4, k1 = k2 = k′

2 = k3 = k4 = 1, k5 = 0.1, k6 = 0.075, J3 = J4 = 0.3.

scheme we obtain the following system of coupled differential equation

dX

dt
= k1S −

(
k′

0 + k0 E∗(R)
)
X

dR

dt
=
(
k′

0 + k0E
∗(R)

)
X − k2R

E∗(R) = G(k3R, k4, J3, J4) .

(9.35)

We again assume that the activation/deactivation of the enzyme is much faster than
the other reaction. Hence, the enzyme E∗ is assumed to be always in a steady state.
The corresponding steady state solution is then (9.16). In Figure 9.40 the numerical
simulation of (9.35) is shown. For the chosen set of parameters the system displays stable
oscillations. First, the amount of the intermediate X increases faster than it is converted
into the response component R. But R promotes its own production via the enzyme E∗.
According to the sigmoidal shape of (9.16), the positive feedback term k0E

∗ is small in
comparison to the direct transformation with k′

0. The response component will increase
approximately linear. If R exceeds a critical value the enzyme concentration jumps to
a high value. The conversion from X into R is now determined by the reaction of the
activated enzyme and the intermediate. This reaction is faster than the production of
X. The result is a strong increase of the response component until the intermediate is
depleted. Then the fast production of R breaks down. On the other hand, the decay of the
response component is now faster as its slow production and its concentration decrease.
In the mean time the amount of X increase again.

Next we investigate the system (9.35) in more detail. We start with a computation of
the steady state, solving the coupled system of balance equations equations

0 = k1S −
(
k′

0 + k0E
∗
)
X , (9.36)

0 =
(
k′

0 + k0E
∗
)
X − k2R . (9.37)

For the respective subsystems we derive

X =
k1 S

k′
0 + k0E∗(R)

(9.38)
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Fig. 9.40: The oscillatory behavior of the system (9.35). The response signal R(t) is drawn
as solid line and the intermediate X(t) as a dashed line. Parameters: k0 = 0.4, k′

0 = 0.01,
k1 = k2 = k3 = 1,k4 = 0.3, J3 = J4 = 0.05, S = 0.2, X0 = 1, R0 = 0.2.

from (9.36) and

R =
k′

0 + k0E
∗(R)

k2
X (9.39)

for the second equation (9.37). Both solutions are shown in Figure 9.41, together with
a phase-plane representation of the temporal evolution in Figure 9.40. Whereas, (9.38)
is a monostable function, the stimulus-response curve of the R-subsystem is bistable.
This bistability triggers the occurrence of oscillations. Remember, the steady state of the
substrate-depletion oscillator is given by the intersection of both curves. Mathematically
we have to derive the balance equations (9.36) and (9.37) simultaneously. The result is
the linear function

Rss =
k1

k2
S . (9.40)

But for a stable steady state all subsystems have to be in a stable steady state. This is not
the case for the given set of parameters in Figure 9.41. The system performs oscillations
around the steady state solution (9.40).

If we choose other rate coefficients the intersection of (9.38) and (9.39) change its
position. Again, in analogy to the activator-inhibitor system (9.31) the state space of
substrate-depletion oscillator (9.35) is separated into a region of stable oscillation and a
non-oscillating part, where the system tends to a stable steady state. In Figure 9.42 this
is illustrated with the stimulus-response representation. The straight line are the steady
state solutions (9.40) following from (9.36) and (9.37) as a function of the external signal
strength S. Solid parts of the line corresponds to a stable steady state. With the dashed
part the system performs stable oscillations around the formal solution. The closed line
corresponds to maximal and minimal values of the amplitude. This pictures shows a sharp
transition between both behaviors. The value of minimal response component is nearly
constant, where the maximum depends from the external signal.
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Fig. 9.41: Phase-plane representation of the substrate-depletion oscillator (9.35) combined
with stimulus-response curves of the subsystems. The solid black line is the limit cycle of
the stable oscillations of intermediate X and response component R. The balance equations
(9.36) and (9.37) were numerically solved. The steady state solution, the intersection of the
stimulus-response curves, is located in the unstable branch of the response component, the
system therefore displays oscillations around this point. Parameters: k0 = 0.4, k′

0 = 0.01,
k1 = k2 = k3 = 1, k4 = 0.3, J3 = J4 = 0.05, S = 0.2, X0 = 1, R0 = 0.2.
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Fig. 9.42: Stimulus-response curve for the substrate-depletion oscillator (9.35). The straight
line are the steady states. In the interval 0.132 < S < 0.365 the system has no stable
solution of the balance equations, shown as a dashed segment of the line. Under these
conditions oscillations occur. The maximal and minimal values of the response component
are shown as a closed curve. Again the amplitude of oscillations depends from the signal
strength. Outside the unstable region the response component tends to the steady state
value. Near the critical points damped oscillations occur. Parameters: k0 = 0.4, k′

0 = 0.01,
k1 = k2 = k3 = 1, k4 = 0.3, J3 = J4 = 0.05.
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A Glossary

Most biological textbooks have a glossary, for mathematical expressions we refer to Eric
Weisstein’s MathWorld web-site http://mathworld.wolfram.com/ or a mathematics dic-
tionary (e.g. [BB89]).

abscissa The horizontal axis or x-coordinate of a point in the two-dimensional plane. See
also ordinate.

absolute value The positive value of a number, disregarding its sign and written |x|.

activation loop A segment of the amino acid sequence that contains phosphorylation
sites usually at the surface of a protein and accessible by protein kinases.

active site Region of an enzyme surface to which a substrate molecule binds in order to
undergo a catalyzed reaction.

active transport Movement of a molecule across a membrane or other barrier driven
by energy other than that stored in the electrochemical gradient of the transported
molecule.

adaptors Adaptor proteins typically do not posses a catalytic function but bind to other
proteins. Adaptors serve to physically connect proteins with each other. See also
exchange factors.

algebra A branch of mathematics that generalizes arithmetic operations with numbers
to operations with variables, matrices etc.

amino acid Class of biochemical compounds from which proteins are composed. Around
20 amino acids are present in proteins.

analysis A branch of mathematics concerned primarily with limits of functions, se-
quences, and series.

analytic function A function possessing derivatives of all orders and agreeing with its
Taylor series locally.

antibody A protein molecule produced in response to an antigen.

antigen Molecules that is able to provoke an immune response.

argument The argument of a function is the element to which a function applies. Usually
the independent variable of the function.

associative A law or operation is called associative if the placement of brackets does not
matter: (a · b) · c ≡ a · (b · c).

ATP The principal carrier of chemical energy in cells.

autocatalysis Reaction that is catalyzed by one of its produces, creating a positive feed-
back (self-amplifying) effect on the reaction rate.

autoinhibition Mechanism for inhibiting own activity; e.g., Raf contains an autoregula-
tory domain that inhibits its own activity by binding to its catalytic domain. The
autoregulatory domain is relieved from the catalytic domain by phosphorylation of
characteristic residues.

http://mathworld.wolfram.com/
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autonomous A system (of differential equations) is said to be autonomous if it does not
explicitly depend on time.

apoptosis Controlled cell death.

attractor A region of the space describing the temporal solution of a dynamic system
towards which trajectories nearby converge, are attracted to. An attractor can be a
equilibrium point or a circle. An attractive region that has no individual equilibrium
point or cycle is referred to as a chaotic or strange attractor.

bifurcation point An instability point in which a single equilibrium condition is split
into two. At a bifurcation point the dynamics of a system changes structurally.

bioinformatics The management and analysis of genomic data, most commonly using
tools and techniques from computer science.

calculus A branch of mathematics concerned with the rate of change of a dependent
variable in a function.

category theory A branch of mathematics that considers mappings and their effect on
sets. A category is a structure consisting of a set of objects and a class of maps,
which satisfy specific properties.

chain rule A rule used in the context of differential equations and which states that
dy/dx = dy/dt× dt/dx.

class Another name for set, especially a finite set.

closed form An expression or solution in terms of well understood quantities.

coefficient A numerical or constant multiplier of a variable in an algebraic term.

continuous function A function for which the value changes gradually.

control Target or set-point tracking, making the system sensitive to changes in the input.
See also regulation and homeostasis.

cytokine Extracellular signal protein or peptide that acts as a local short distance me-
diator in cell-cell communication. Cytokines are called lymphokines if produced by
lymphocytes, interleukines if produced by leucocytes, and monokines if produced by
monocytes and macrophages.

cytoplasm Contents of a cell that are contained within its plasma membrane but, in the
case of eucaryotic cells, outside the nucleus.

damped oscillations An oscillation in which the amplitude decreases over time.

differentiation process by which the cell acquires specialized functional properties.

differentiable A system (usually a process described by differential equations) is called
differentiable if its phase space has the structure of a differentiable manifold, and
the change of state is described by differentiable functions.

dimer A protein molecule which consist of two subunits separated polypeptide chains);
homodimer: the subunits are identical; heterodimer: the subunits are different;
heterotrimer: three subunits, some different.

dimerization The process by which two molecules of the same chemical composition
form a condensation product or polymer.



228 APPENDIX A. GLOSSARY

discretization An approximation of a continuous object.

dynamic system A system that changes with time.

EGF Epidermal Growth Factor. EGF is expressed by many cells and stimulates the
proliferation of many cell types via Ras and the Raf/MEK/ERK pathway.

EGFR EGF Receptor, a prototypical receptor tyrosine kinase.

electrophoresis An experimental technique to separate DNA fragments or proteins from
a mixture. The molecules are separated by their mass, size or rate of travel through
a medium (typically agarose or gels) and their electrical charge.

enzyme Protein that catalyzes a specific chemical reaction.

epithelial A epithelial is a coherent cell sheet formed from one or more layers of (epithe-
lial) cells covering an external surface or lining a cavity. For example, the epidermis
is the epithelial layer covering the outer surface of the body.

equilibrium State where there is no net change in a system. E.g. in a chemical reaction
the equilibrium is defined by the state at which the forward and reverse rates are
equal.

equilibrium point Point such that the derivatives of a system of differential equations
are zero. An equilibrium point may be stable (then called an attractor) or unstable
(repellor).

exchange factors Bind to the activated receptor, i.e., act as an adaptor; facilitate the
exchange of bound GDP for GTP on small G-proteins, which are several steps away
from the receptor, and thus activate them.

expression Production of a protein which has directly observable consequences.

extended phase space See phase space.

feedback inhibition Regulatory mechanism in metabolic pathways - an enzyme further
up in the pathway is inhibited by a product further down in that pathway.

finite-dimensional A process is called finite-dimensional if its phase space is finite di-
mensional, i.e., if the number of parameters needed to describe its states is finite.

fixed point See steady state.

formal system A mathematical framework in which to represent natural systems.

fun What we experience doing mathematics.

function A relation between two sets that describes unique associations among the ele-
ments of the two sets. A function is sometimes called a mapping or transformation.

GAP GTPase Activating Protein. Ras proteins possess intrinsic GTPase activity which
hydrolyses the bound GTP to GDP, i.e., cleaves off a phosphate from GTP. This
hydrolysis is a dephosphorylation and as such a phosphatase reaction. A dephospho-
rylation or phosphatase reaction is a special case of a hydrolysis reaction. Hydrolysis
reactions are all reactions where water, H2O, is used to break a chemical bond. The
intrinsic GTPase activity of Ras is weak. However, GAPs can accelerate this activity
almost 1000fold. GAPs do not hydrolyse GTP, they bind to Ras and make Ras a
more efficient GTPase.
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gene product The macromolecules, RNA or proteins, that are the result of gene expres-
sion.

gene expression The process by which the information, coded in the genome, is tran-
scribed into RNA. Expressed genes include those for which the RNA is not translated
into proteins.

genome The entirety of genetic material (DNA) of a cell or an organism.

gradient The slope of a line measured as the ratio of its vertical change to its horizontal
change.

Grb-2 Growth-factor Receptor Binding protein-2. Grb-2 is an adaptor protein.

group A mathematical group is a set, together with a binary operation on the group
elements.

growth factor Extracellular signalling molecule that can stimulate a cell to grow or
proliferate.

G-proteins Small monomeric GTP-binding proteins (e.g. Ras), molecular switches that
modulate the connectivity of a signalling cascade: resting G-proteins are loaded
with GDP and inactive, replacement of GDP with GTP by exchange factors means
activation.

GTP/GDP Guanosine triphospate (GTP) refers to three phosphate molecules attached
to the sugar, guanosine diphosphate for two (GDP). See also GAP.

homeostasis Regulation to maintain the level of a variable. See also regulation.

homologues proteins/genes Have descended from a common ancestor; genes are either
homologous or non-homologous, not in between; though, due to multiple genomic
rearrangements, the evolutionary history of individual components (domains = evo-
lutionary units) of a gene/protein might be difficult to trace.

hydrolysis See GAP.

immunoglobin General expression for antibody molecules.

infinitesimal Infinitely small. Infinitesimal quantities are used to define integrals and
derivatives, and are studied in the branch of maths called analysis.

integral curve A trajectory in extended phase space.

in vitro Experimental procedures taking place in an isolated cell-free extract. Cells grow-
ing in culture, as opposed to an organism.

in vivo In an intact cell or organism.

in silico In a computer, simulation.

isoforms Closely homologous proteins (from different genes) that perform similar or only
slightly different functions, e.g., under tissue-specific control. Two or more RNAs
that are produced from the same gene by different transcription and/or differential
RNA splicing are referred to as isoforms.

kinase Enzyme which catalyzes the phosphorylation of a protein.

ligand Molecule that bind to a specific site on a protein or other molecule.



230 APPENDIX A. GLOSSARY

linear equation An equation y = ax + b is linear because the graph of y against x is a
straight line (with slope a and intercept b. A linear equation should not be confused
with a linear system. See also nonlinearity.

linear system A system is nonlinear if changes in the output are not proportional to
changes in the input.

linerization Taylor expansion of a dynamical system in the dependent variable about a
specific solution, discarding all but the terms linear in the dependent variable.

locus The position of a gene on a chromosome, the DNA of that position; usually re-
stricted to the main regions of DNA that are expressed.

lysis Rupture of a cell’s plasma membrane, leading to the release of cytoplasm and the
death of the cell.

manifold A mathematical space in which the local geometry around a point in that space
is equivalent to the Euclidean space.

MAP-kinase Mitogen-activated protein kinase that performs a crucial step in transmit-
ting signals from the plasma membrane to the nucleus.

metabolism The entirety of chemical processes in the cell.

mitogen Substance that stimulates the mitosis of certain cells.

mitosis Process in cell division by which the nucleus divides.

monomer A protein molecule which consist of one subunits separated polypeptide chains;
homodimer: the subunits are identical; heterodimer: the subunits are different;
heterotrimer: three subunits, some different.

morphism Generalization of the concepts of relation and function. Often synonymously
used with mapping.

multimer A protein molecule which consist more than four subunits separated polypep-
tide chains); homodimer: the subunits are identical; heterodimer: the subunits are
different; heterotrimer: three subunits, some different.

natural system An aspect of the phenomenal world, studied in the natural sciences.

noise A description of real or simulated data for which the behavior is or appears unpre-
dictable.

nonlinearity Linearity is defined in terms of functions that have the property f(x+y) =
f(x)+f(y) and f(ax) = af(x). This means that the result f may not be proportional
to the input x or y.

oncogene An altered gene whose product which takes a dominant role in creating a
cancerous cell.

ordinate The vertical or y-axis of the coordinate system in the plane.

orbit The set of points in phase space through which a trajectory passes.

organization Pattern or configuration of processes.

peptide A small chain of amino acids linked by peptide bonds.

percepts The consequence of cognitive processes or observations.
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phase space Phase space is the collection of possible states of a dynamical system, i.e.,
the mathematical space formed by the dependent variables of a system. An extended
phase space is the cartesian product of the phase space with the independent variable,
which is often time.

phenomenon A collection of percepts to which relationships are assigned.

phosphatase Enzyme that removes phosphate groups from a molecule.

phosphorylation Important regulatory process, one third of mammalian proteins are
regulated by reversible phosphorylation; phosphate groups P from ATP molecules
are transferred to the -OH groups of serine, threonine or tyrosine residues by pro-
tein kinases; phosphate groups are two times negatively charged, their addition will
change the protein’s local conformational characteristics and can thus activate a
protein. See also GAP and protein phosphorylation.

polymer Large molecule made be linking monomers together.

protein A linear polymer of linked amino acids, referred to as a macromolecule and major
constituent component of the cell.

protease, proteinase Enzymes that are degrading proteins by splitting internal peptide
bonds to produce peptides.

proteinase inhibitor small proteins that inhibit various proteinase enzymes. An exam-
ple is antitrypsin.

protein kinase Enzyme that transfers the terminal phosphate group of ATP to a specific
amino acid of a target protein.

protein phosphorylation The covalent addition of a phosphate group to a side chain
of a protein catalyzed by a protein kinase.

random process A description of real or simulated data for which the behavior is or
appears unpredictable.

RAS protein Member of a large family of GTP-binding proteins that helps transmit
signals from cell-surface receptors to the nucleus. Ras-GDP is the inactive form
of Ras, which is bound to Guanosin-Di-Phosphate. Ras-GTP is the active form
of Ras, which is bound to Guanosin-Tri-Phosphate. This form of Ras undergoes a
conformational change that enables it to bind with high affinity to other proteins
such as Raf.

receptor tryrosine kinase Receptor tyrosine kinases play an important role in the reg-
ulation of cell proliferation, survival and differentiation. The binding of the ligand
(including growth factors, hormones etc.) to the extracellular portion of the recep-
tor typically activates the kinase activity of the intracellular portion of the receptor,
resulting in autophosphorylation on several tyrosine residues. the phosphorylated
tyrosines serve as docking sites for adaptor proteins such as Grb-2 resulting in the
assembly of a multiprotein complex at the receptor. This complex is a platform that
typically mediates the specific biological responses by activating several intracellular
signalling pathways.

regulation The maintenance of a regular or desirable state, making a system robust
against perturbations. See also homeostasis and control.

repressor Protein that binds to a specific region of DNA to prevent transcription of an
adjacent gene.
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residue Proteins are built of amino acids by forming peptide bonds under removal of
water; what remains of the amino acids are the amino acid residues.

sample space The set of possible outcomes in a statistical experiments.

scaffold protein Protein that organizes groups of interacting intracellular signalling pro-
teins into signalling complexes.

signalling, signal transduction A process by which signals are relayed through bio-
chemical reactions.

sigma algebra A σ-algebra is a collection of subsets of a set that contains the set itself,
the empty set, the complements in the set of all members of the collection, and all
countable unions of members.

steady state A system state in which the system remains. A steady state is associated
with a fixed point, i.e., the point in the state-space in which the system remains.

stochastic process A mathematical concepts defined as a sequence of random variables.

SOS Son of Sevenless. SOS is the prototypic GDP/GTP Exchange Factor, GEF. There
are many GEFs, but SOS is ubiquitiously expressed. GEFs cause Ras to release
GDP. Since the cell contains much higher concentrations of GTP than GDP, per
default a GTP molecule will bind to Ras in place of the released GDP. Oncogenic
Ras mutants cannot release GDP. Therefore, they are always in the active (GTP
bound) form.

system A collection of objects and a relation among these objects.

tangent bundle The set of tangent vectors to a manifold.

terminal domain N-terminal domain, C-terminal domain chain of amino acid residues
leaves an amino group free at one end, and a carboxy group at the other end; by
convention a protein chain starts at the N-terminus, i.e., the N-terminal domain is
the first domain near the amino terminus; the C-terminal domain the last near the
carboxy terminus.

tetramer A protein molecule which consist of four subunits separated polypeptide chains;
homodimer: the subunits are identical; heterodimer: the subunits are different;
heterotrimer: three subunits, some different.

TNF Tumor necrosis factor, protein produced by macrophages in the presence of an
endotoxin.

trajectory The solution of a set of differential equations, synonymous with the phrase
phase curve.

tryrosine kinase See receptor tyrosine kinase.

vector A mathematical vector is an ordered set of elements, e.g., (a, c, b). An unordered
list is denoted {a, b, c}, where the position of the elements in the list does not matter.
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B Notation

The notation used in this text was one of the biggest challenges. Since we are dealing
with various aspects of mathematics and different application areas, there are conflicting
customary uses of symbols. For example, in stochastic modelling we use n to denote
the state vector, i.e., the number of molecules at any particular time. In modelling with
differential equations, n is a constant used to denote the number of equations, ẋi, i =
1, . . . , n. The letter x refers to a variable, random variable x(t), vector x = (x1, . . . , xn), ...
. An effort is made to introduce notation and symbols where they appear first. According
to convention in biological textbooks, acronyms printed in lower case indicate genes (e.g.
ras), capitalized acronyms indicate their protein products (Ras or RAS).

Units

L liter.
Da Dalton.
mol moles, molar mass.
M molarity, molar concentration.
sec seconds.
min minutes.
g grams.

Mathematical Symbols

→ mapping, function, morphism, arrow.
7→ “maps to”.
: “for which”, “such that”.
| “conditional on”.
∀ “for all”.
∈ “element of”.
.
= “by definition”.
∃ “there exists”.
≡ “equivalent”, “identical”.
∝ “proportional to”.
≈ “approximately”.
⇒ “implies”, material implication.
⇔ “if and only if” (iff).
∴ “therefore”.

NA Avogadro number.
{ } set, list.
( ) ordered set, sequence, vector.
Z set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
Z+ set of nonnegative integers {0, 1, 2, . . .}.
N set of natural numbers {1, 2, . . .}.
R set of real numbers.
Q set of rational numbers.
C set of complex numbers.
Rp×m set of real p×m matrices.
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B σ-algebra.
∅ empty set.
⊆ subset.
⊂ proper subset.
∩ intersection.
∪ union.
� partial or semi-ordering.
∨ disjunction, “or”.
∧ conjunction, “and”.
◦ composition.
1(·) identity map.
d/dt differential operator in an ODE.
ẋ short form of the differential dx/dt.
∂/∂t partial differential operator.
N (x̄, σ2

x) normal or Gaussian probability distribution/density function.
x̄ mean value.
σ2 variance.
ρ Euclidean distance.
n! factorial, n! = 1× 2× 3× · · · × n.
∞ infinity.

Abbreviations

ADP adenosine diphosphate.
ATP adenosine triphosphate.
CME chemical master equation.
EGF epidermal growth factor.
ERK extracellular signal-regulated kinase.
GDP guanosine diphosphate.
GTP guanosine triphosphate.
GMA generalized mass action.
JAK janus kinase.
LMA law of mass action.
MAP mitogen-activated protein.
MAPK mitogen-activated protein kinase.
MAPKK mitogen-activated protein kinase kinase.
MEK MAPK/ERK kinase.
MEKK MEK kinase.
ODE ordinary differential equation.
pgf probability generating function.
mgf moment generating function.
cgf cumulant generating function.
CV coefficient of variation.
Var variance.
Std standard deviation.
lim limes, in the limit.
det determinant.
w.r.t. with respect to.
iff if and only if.
SOS son of sevenless.
STAT signal transducers and activators of transcription.
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TNF tumor necrosis factor.
TPA 12-O-tetracecanoyl-phorbol-12-acetate.

Chapter 2

S system.
O object(s).
R relation.
A×B Cartesian product.
T time set.
I index set.
U, Y input, output objects/spaces.
φ state mapping.
g, h input, output mapping.
u, y, x input-, output-, and state-variable/vector.
Ω sample space of a random variable.
B σ-algebra.
P (·) probability measure/function.
Prob{A} probability of event A.
ω ∈ Ω elementary event.
w(ω) random variable.
wt(ω) stochastic process.
n number of state variables/ODEs.
m number of dependent variables.
Keq equilibrium constant.
Kd dissociation constant.

Chapter 3

n number of molecules, state-vector.
∆ small but not infinitesimal change.
#S number of molecules.
nT total number of molecules.
k rate constant.
Rµ reaction channel (irreversible reaction).
M number of reaction channels.
x̃ steady state.
〈S(t)〉 mean or average of the process S(t).
Km Michaelis-Menten constant.
V volume, or velocity.
Vmax limiting rate in a kinetic reaction.
Sj chemical species.
N number of chemical species.
[S] concentration of S.
S state (vector) of the system.
Rµ reaction channel.
cµ stochastic reaction constant (stochastic simulation).
aµ propensity of reaction Rµ.
a∗ propensity for any of the Rµ to occur.
hµ number of distinct combinations of Rµ reactant molecules.
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Kµ molecularity of reaction Rµ.
lµj stoichiometric coefficient.
Lµ number of reactant species.
νµj change in the population of molecular species Sj in reaction Rµ.
P (·) probability measure.
F (·) cumulative distribution function.
pm,n transition probability.
Π probability transition matrix.
vµ rate of reaction.
P probability generating function (pgf).
P′ derivative of the pgf.
M moment generating function (mgf).
C cumulant generating function (cgf).

Chapter 6

θ parameter(s).
n, m number of dependent, independent variables.
x, X state variable, state space or fiber.
u, y input and output variable.
φ state mapping.
h output mapping.
J Jacobian matrix.
H(A, B) set of all mappings from A to B.
ϕ flow.
G group.
C category.
TxX tangent space to domain X.
TX tangent bundle.
M family of models.
(P, π) parametrization, π : P→M.
P parameter space, base space.
(P, X) fiber bundle.
BA exponential of maps from A to B.
ef evaluation map.
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